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1.0: Video Introduction to Chapter 1

Video introduction to Chapter 1, delivered by Dr. Jacob Moore. Discusses focus of the chapter: the impact of forces and moments
on physical bodies. YouTube source: https://www.youtube.com/watch?v=ljkTOjZ6jt8&t=3s.
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history is available upon request.
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1.1: Bodies

Bodies in Engineering Mechanics 

A body, for the purposes of engineering mechanics, is a collection of matter that is analyzed as a single object. This can be
something simple like a rubber ball, or it can be something made of many parts such as a car. What can count as a body and what
cannot count as a body is dependent on the circumstances of the analysis. In some circumstances in engineering mechanics, it is
useful to make certain assumptions about the bodies being analyzed. We will usually need to assume the body is either rigid or
deformable, and we will also need to assume that the body is either a particle or an extended body.

Rigid versus Deformable Bodies 

Rigid bodies do not deform (stretch, compress, or bend) when subjected to loads, while deformable bodies do deform. In actuality,
no physical body is completely rigid, but most bodies deform so little that this deformation has a minimal impact on the analysis.
For this reason, we usually assume in the statics and dynamics courses that the bodies discussed are rigid. In the strength of
materials course we specifically remove this assumption and examine how bodies deform and eventually fail under loading.

There is no set boundary for determining if a body can be approximated as rigid, but there are two factors to look for that indicate
that a rigid body assumption is not appropriate. First, if the body is being significantly stretched, compressed, or bent during the
period of analysis, then the body should not be analyzed as a rigid body. Second, if the body has parts that are free to move relative
to one another, then the body as a whole should not be analyzed as a rigid body; this is instead a machine, comprised of multiple
connected bodies that will each need to be analyzed separately.

Figure : This hammer is a good example of a rigid body for analysis. It deforms little under regular use and does not have any
pieces that move relative to one another. Public Domain image, no author listed.

Figure : This car deformed significantly during the crash test. When analyzing the impact, we should not treat the car as a
rigid body. Image by Brady Holt CC-BY-3.0.

Figure : This pair of scissors consists of two halves held together with a rivet. Because the two halves can move relative to
one another, the pair of scissors as whole should not be treated as a rigid body. Image by ZooFari CC-BY-SA 3.0.

Particles versus Extended Bodies 

Particles are bodies where all the mass is concentrated at a single point in space. Particle analysis will only have to take into
account translational motion and the forces acting on the body, because rotation is not considered for particles. Extended bodies, on
the other hand, have mass that is distributed throughout a finite volume. Often in engineering statics, we will take a shortcut and
say rigid bodies to describe extended bodies that also happen to be rigid. This is because particles, as a single point, cannot
deform. Extended body analysis is more complex and also has to take into account moments and rotational motions. In actuality, no
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bodies are truly particles, but some bodies can be approximated as particles to simplify analysis. Bodies are often assumed to be
particles if the rotational motions are negligible when compared to the translational motions, or in systems where there is no
moment exerted on the body, such as a concurrent force system.

Figure : The rotation of this comet and the moments exerted on the comet are unimportant in modeling its trajectory through
space, therefore we would treat it as a particle. Public Domain image by Buddy Nath.

Figure : The gravitational forces and the tension forces on the skycam all act through a single point, making this a concurrent
force system that can be analyzed as a particle. Image by Despeaux CC-BY-SA 3.0.

Figure : Rotation and moments will be key to the analysis of the crowbar in this system, therefore the crowbar needs to be
analyzed as an extended body. Public Domain image by Pearson Scott Foresman.

Video : Lecture video covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/-ETzKW31aZI.

This page titled 1.1: Bodies is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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1.2: Forces
A force is any influence that causes a body to accelerate. Forces on a body can also cause stress in that body, which can result in the
body deforming or breaking. Though forces can come from a variety of sources, there are three distinguishing features to every
force. These features are the magnitude of the force, the direction of the force, and the point of application of the force. Forces
are often represented as vectors (as in the diagram to the right) and each of these features can be determined from a vector
representation of the forces on the body.

Figure : A basic point force acting on a body.

Magnitude: 
The magnitude of a force is the degree to which the force will accelerate the body it is acting on; it is represented by a scalar (a
single number). The magnitude can also be thought of as the strength of the force. When forces are represented as vectors, the
magnitude of the force is usually explicitly labeled. The length of the vector also often corresponds to the relative magnitude of the
vector, with longer vectors indicating larger magnitudes.

The magnitude of force is measured in units of mass times length over time squared. In metric units the most common unit is the
Newton (N), where one Newton is one kilogram times one meter over one second squared. This means that a force of one Newton
would cause a one-kilogram object to accelerate at a rate of one meter per second squared. In English units, the most common unit
is the pound (lb), where one pound is equal to one slug times a foot over a second squared. This means that a one-pound force
would cause an object with a mass of one slug to accelerate at a rate of one foot per second squared.

Direction: 
In addition to having magnitudes, forces also have directions. As we said before, a force is any influence that causes a body to
accelerate. Since acceleration has a specific direction, force also has a specific direction that matches this acceleration. The
direction of the force is indicated in diagrams by the direction of the vector representing the force.

Direction has no units, but it is usually given by reporting angles between the vector representing the force and coordinate axes, or
by reporting the X, Y, and Z components of the vector. Often times vectors that have the same direction as one of the coordinate
axes will not have any angles or components listed. If this is true, it is usually safe to assume that the direction does match the
direction of one of the coordinate axes.

1.2.1

Force =
(mass)(distance)

(time)2
(1.2.1)

1 Newton (N) =
(kg)(m)

s2
(1.2.2)

1 pound (lb) =
(slug)(ft)

s2
(1.2.3)
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Figure : The magnitude and direction of a vector can be given as a magnitude and an angle of the vector, or by giving
magnitude of the vector components in each of the coordinate axes.

Point of Application: 
The point, or points, at which a force is applied to a body is important for understanding how the body will react. For particles,
there is only a single point for the forces to act on, but for rigid bodies there are an infinite number of possible points of application.
Some points of application will lead to the body undergoing simple linear acceleration; some will exert a moment on the body
which will cause the body to undergo rotational acceleration as well as linear acceleration.

Depending on the nature of the point of application of a force, there are three general types of forces. These are point forces,
surface forces, and body forces. Below is a diagram of a box being pulled by a rope across a frictionless surface. The box has
three forces acting on it. The first is the force from the rope. This is a force applied to a single point on the box, and is therefore
modeled as point force. Point forces are represented by a single vector. Second is the normal force from the ground that is
supporting the box. Because this force is applied evenly to the bottom surface of the box, it is best modeled as a surface force.
Surface forces are indicated by a number of vectors drawn side by side with a profile line to indicate the magnitude of the force at
any point. The last force is the gravitational force pulling the box downward. Because this force is applied evenly to the entire
volume of the box, it is best modeled as a body force. Body forces are sometimes shown as a field of vectors as shown, though they
are often not drawn out at all because they end up cluttering the free body diagram.

Figure : The box being pulled along a frictionless surface as shown above has three types of forces acting on it. The tension in
the cable is best represented by a point force, the normal force supporting the box is best represented by a surface force, and the
gravitational force on the box is best represented as a body force.

We will also sometimes talk about distributed forces. A distributed force is simply another name for either a surface or a body
force.

The exact point or surface that the force is acting on can be drawn as either the head or the tail of the force vector in the free body
diagram. Because of the principle of transmissibility, both options are known to represent the same physical system.
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Figure : The diagrams on the left represent two equivalent free body diagrams for the same physical system with a single
point force. The diagrams on the right represent two equivalent free body diagrams for the same physical system with a single
surface force.

Video : Lecture video covering this section, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/8MR_w3ZOOiM.

This page titled 1.2: Forces is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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1.3: Moments
A moment (also sometimes called a torque) is defined as the "tendency of a force to rotate a body". Where forces cause linear
accelerations, moments cause angular accelerations. In this way moments, can be thought of as twisting forces.

Figure : Imagine two boxes on an icy surface. The force on box A would simply cause the box to begin accelerating, but the
force on box B would cause the box to both accelerate and to begin to rotate. The force on box B is exerting a moment, where the
force on box A is not.

The Vector Representation of a Moment: 

Moments, like forces, can be represented as vectors and have a magnitude, a direction, and a "point of application". For moments
however a better name for the point of application is the axis of rotation. This will be the point or axis about which we will
determine all the moments.

Magnitude: 

The magnitude of a moment is the degree to which the moment will cause angular acceleration in the body it is acting on. It is
represented by a scalar (a single number). The magnitude of the moment can be thought of as the strength of the twisting force
exerted on the body. When a moment is represented as a vector, the magnitude of the moment is usually explicitly labeled. though
the length of the moment vector also often corresponds to the relative magnitude of the moment.

The magnitude of the moment is measured in units of force times distance. The standard metric units for the magnitude of moments
are Newton-meters, and the standard English units for a moment are foot-pounds.

Direction: 

In a two-dimensional problem, the direction can be thought of as a scalar quantity corresponding to the direction of rotation the
moment would cause. A moment that would cause a counterclockwise rotation is a positive moment, and a moment that would
cause a clockwise rotation is a negative moment.

In a three-dimensional problem, however, a body can rotate about an axis in any direction. If this is the case, we need a vector to
represent the direction of the moment. The direction of the moment vector will line up with the axis of rotation that moment would
cause, but to determine which of the two directions we can use along that axis we have available we use the right hand rule. To use
the right hand rule, align your right hand as shown in Figure  so that your thumb lines up with the axis of rotation for the
moment and your curled fingers point in the direction of rotation for your moment. If you do this, your thumb will be pointing in
the direction of the moment vector.

1.3.1

M = F ∗ d (1.3.1)

Metric: N ∗m (1.3.2)

English: lb ∗ ft (1.3.3)
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Figure : To use the right hand rule, align your right hand so that your thumb lines up with the axis of rotation for the moment
and your curled fingers point in the direction of rotation for your moment. This means your thumb will be pointing in the direction
of the moment vector.

If we look back to two-dimensional problems, all rotations occur about an axis pointing directly into or out of the page (the -axis).
Using the right hand rule, counterclockwise rotations are represented by a vector in the positive  direction and clockwise rotations
are represented by a vector in the negative  direction.

Axis of Rotation: 

In engineering statics problems we can choose any point/axis as the axis of rotation. However, the choice of this point will affect
the magnitude and direction of the resulting moment, and the moment is only valid about that point.

Figure : The magnitude and direction of a moment depends upon the chosen axis of rotation. For example, the single force
above would cause different moments about Point A and Point B, because it would cause different rotations depending on the point
we fix in place.

Though we can take the moment about any point in a statics problem, if we are adding together the moments from multiple forces,
all the moments must be taken about a common axis of rotation. Moments taken about different points cannot be added together
to find a "net moment."

Additionally, if we move into the subject of dynamics, where bodies are moving, we will want to relate moments to angular
accelerations. For this to work, either we will need to take the moments about a single point that does not move (such as the hinge
on a door) or we will need to take the moments about the center of mass of the body. Summing moments about other axes of
rotation will not result in valid calculations.

Calculating Moments: 

To calculate the moment that a force exerts on a body, we will have two main options: scalar methods and vector methods. Scalar
methods are generally faster for two-dimensional problems where a body can only rotate clockwise or counterclockwise, while
vector methods are generally faster for three-dimensional problems where the axis of rotation is more complex.
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Video : Lecture video covering this section, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/RyOwVvYEFHU.

This page titled 1.3: Moments is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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1.4: Free Body Diagrams
A free body diagram is a tool used to solve engineering mechanics problems. As the name suggests, the purpose of the diagram is
to "free" the body from all other objects and surfaces around it so that it can be studied in isolation. We will also draw in any forces
or moments acting on the body, including those forces and moments exerted by the surrounding bodies and surfaces that we
removed.

The diagram below shows a ladder supporting a person and the free body diagram of that ladder. As you can see, the ladder is
separated from all other objects and all forces acting on the ladder are drawn in with the key dimensions and angles shown.

Figure : A ladder with a man standing on it is shown on the left. Assuming friction only at the base, a free body diagram of
the ladder is shown on the right.

Constructing the Free Body Diagram: 
The first step in solving most mechanics problems will be to construct a free body diagram. This simplified diagram will allow us
to more easily write out the equilibrium equations for statics or strengths of materials problems, or the equations of motion for
dynamics problems.

To construct the diagram we will use the following process:

1. First draw the body being analyzed, separated from all other surrounding bodies and surfaces. Pay close attention to the
boundary, identifying what is part of the body, and what is part of the surroundings.

2. Second, draw in all external forces and moments acting directly on the body. Do not include any forces or moments that do not
directly act on the body being analyzed. Do not include any forces that are internal to the body being analyzed.

3. Once the forces are identified and added to the free body diagram, the last step is to label any key dimensions and angles on the
diagram.

Some common types of forces seen in mechanics problems are:

Gravitational Forces: Unless otherwise noted, the mass of an object will result in a gravitational weight force applied to that
body. This weight is usually given in pounds in the English system, and is modeled as 9.81 ( ) times the mass of the body in
kilograms for the metric system (resulting in a weight in Newtons). This force will always point down towards the center of the
earth and act on the center of mass of the body.

Figure : Gravitational forces always act downward on the center of mass.
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Normal Forces (or Reaction Forces): Every object in direct contact with the body will exert a normal force on that body
which prevents the two objects from occupying the same space at the same time. Note that only objects in direct contact can
exert normal forces on the body.

An object in contact with another object or surface will experience a normal force that is perpendicular (normal) to the
surfaces in contact.
Joints or connections between bodies can also cause reaction forces or moments, and we will have one force or moment for
each type of motion or rotation the connection prevents.

Figure : Normal forces always act perpendicular to the surfaces in contact. The barrel in the hand truck shown on the left has a
normal force at each contact point.

Figure : The roller on the left allows for rotation and movement along the surface, but a normal force in the y direction
prevents motion vertically. The pin joint in the center allows for rotation, but normal forces in the x and y directions prevent motion
in all directions. The fixed connection on the right has a normal forces preventing motion in all directions and a reaction moment
preventing rotation.

Friction Forces: Objects in direct contact with the body can also exert friction forces, which will resist the two bodies sliding
against one another, on the body. These forces will always be perpendicular to the surfaces in contact. Friction is the subject of
an entire chapter in this book, but for simple scenarios we usually assume rough or smooth surfaces.

For smooth surfaces we assume that there is no friction force.
For rough surfaces we assume that the bodies will not slide relative to one another, no matter what. In this case, the friction
force is always just large enough to prevent this sliding.

1.4.3
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Figure : For a smooth surface we assume only a normal force perpendicular to the surface. For a rough surface we assume
normal and friction forces are present.

Tension in Cables: Cables, wires or ropes attached to the body will exert a tension force on the body in the direction of the
cable. These forces will always pull on the body, as ropes, cables and other flexible tethers cannot be used for pushing.

Figure : The tension force in cables always acts along the direction of the cable and will always be a pulling force.

The above forces are the most common, but other forces such as pressure from fluids, spring forces and magnetic forces exist and
may act on the body.

Video : Lecture video covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/Kr7obGR68-Y.

Worked Problems: 

The drawing below shows two boxes sitting on a table. Draw a free body diagram of box A and box B.
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Figure : problem diagram for Example ; two boxes are stacked on a flat surface, with one weighing 3 lbs on top of
another weighing 5 lbs.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/RMVa9kioALs.

Two equally sized barrels are being transported in a handtruck as shown below. Draw a free body diagram of each of the two
barrels.

Figure : problem diagram for Example ; two barrels are stacked horizontally, on a handcart tilted so the bottom is
30° above the horizontal.

Solution

1.4.7 1.4.1
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/1a9gjFOIpK8.

The car shown below is moving and then slams on the brakes locking up all four wheels. The distance between the two wheels
is 8 feet and the center of mass is 3 feet behind and 2.5 feet above the point of contact between the front wheel and the ground.
Draw a free body diagram of the car as it comes to a stop.

Figure : Car traveling on a level surface, facing left. Public domain image, no author listed.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/GiB3_fSlJBA.

A 600-pound load is supported by a 5 meter long, 100-pound cantilever beam. Assume the beam is firmly anchored to the wall.
Draw a free body diagram of the beam.
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Figure : problem diagram for Example ; a 600-lb load hangs from the free end of a horizontal beam whose other
end is attached to a wall.

Solution

The main arm of a crane has a mass of 400 kg (assume the center of mass is at the midpoint of the arm), and supports a 200 kg
load and a 600 kg counterweight. The arm is connected to the vertical support via a pin joint and two flexible cables. Draw a
free body diagram of the arm.

Figure : problem diagram for Example ; a crane's arm, currently in the horizontal position, holds a load and a
counterweight on opposite ends.

Solution
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/0V7ULRnnhmA.

This page titled 1.4: Free Body Diagrams is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.5: Newton's First Law
Newton's first law states that: "A body at rest will remain at rest unless acted on by an unbalanced force. A body in motion
continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force."

This law, also sometimes called the "law of inertia", means that bodies maintain their current velocity unless a force is applied to
change that velocity. If an object is at rest with zero velocity it will remain at rest until some force begins to change that velocity,
and if an object is moving at a set speed and in a set direction it will remain at that same velocity until some force acts on it to
change its velocity.

Figure : In the absence of friction in space, this space capsule will maintain its current velocity until some outside force causes
that velocity to change. Public Domain image by NASA.

Figure : This rock is at rest with zero velocity and will remain at rest until a net force causes the rock to move. The net force
on the rock is the sum of any force pushing the rock and the friction force of the ground on the rock opposing that force. Image by
Liz Gray CC-BY-SA 2.0.

Net Forces: 

It is important to note that the net force is what will cause a change in velocity. The net force is the sum of all forces acting on the
body. For example, we can imagine gently pushing on the rock in the figure above and observing that the rock does not move. This
is because we will have a friction force equal in magnitude and opposite in direction opposing our gentle pushing force. The sum of
these two forces will be equal to zero, therefore the net force is zero and the change in velocity is zero.

Rotational Motion: 
Newton's first law also applies to moments and rotational velocities. A body will maintain it's current rotational velocity until a net
moment is exerted to change that rotational velocity. This can be seen in things like toy tops, flywheels, stationary bikes, and other
objects that will continue spinning once started until brakes or friction stop them.

Figure : In the absence of friction, this spinning top would continue to spin forever, but the small frictional moment exerted at
the point of contact between the top and the ground will slow the tops spinning over time. Image by Carrotmadman6 CC-BY-2.0.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/MeY-Cj93Tm4.

This page titled 1.5: Newton's First Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.6: Newton's Second Law

Translational Motion: 

Newton's second law states that: "When a net force acts on any body with mass, it produces an acceleration of that body. The
net force will be equal to the mass of the body times the acceleration of the body."

You will notice that the force and the acceleration in the equation above have an arrow above them. This means that they are vector
quantities, having both a magnitude and a direction. Mass, on the other hand, is a scalar quantity having only a magnitude. Based
on the above equation, you can infer that the magnitude of the net force acting on the body will be equal to the mass of the body
times the magnitude of the acceleration, and that the direction of the net force on the body will be equal to the direction of the
acceleration of the body.

Rotational Motion: 
Newton's second law also applies to moments and rotational velocities. The revised version of the second law equation states that
the net moment acting on the object will be equal to the mass moment of inertia of the body about the axis of rotation ( ) times the
angular acceleration of the body.

You should again notice that the moment and the angular acceleration of the body have arrows above them, indicating that they are
vector quantities with both a magnitude and direction. The mass moment of inertia, on the other hand, is a scalar quantity having
only a magnitude. The magnitude of the net moment will be equal to the mass moment of inertia times the magnitude of the angular
acceleration, and the direction of the net moment will be equal to the direction of the angular acceleration.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/3PF2uNGW7Dw.
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Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.7: Newton's Third Law
Newton's Third Law states "For any action, there is an equal and opposite reaction." By "action" Newton meant a force, so for
every force one body exerts on another body, that second body exerts a force of equal magnitude but opposite direction back on the
first body. Since all forces are exerted by bodies (either directly or indirectly), all forces come in pairs, one acting on each of the
bodies interacting.

Figure : The gravitational pull of the Earth and Moon represent a Newton's Third Law pair. The Earth exerts a gravitational
pull on the Moon, and the Moon exerts an equal and opposite pull on the Earth. Image adapted from Public Domain images, no
authors listed.

Though there may be two equal and opposite forces acting on a single body, it is important to remember that for each of the forces
a Third Law pair acts on a separate body. This can sometimes be confusing when there are multiple Third Law pairs at work.
Below are some examples of situations where multiple Third Law pairs occur.

Figure : This volleyball resting on a surface has two pairs of Third Law forces. The first consists of the gravitational forces
(one force on the ball and one force on the ground). The second consists of the normal forces at the point of contact (one force on
the ball and one force on the ground). Image adapted from Public Domain image, no author listed.

Figure : If we ignore the weight of the two objects, this clamp will also have two pairs of Third Law forces. The first will be a
set of normal forces at the top point of contact (one force on the wood and one force on the clamp) and the second will be another
set of normal forces at the bottom point of contact (one force on the wood and one force on the clamp) Image adapted from Public
Domain image, no author listed.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/zB5l95jwKr4.

This page titled 1.7: Newton's Third Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.8: Chapter 1 Homework Problems

A pulley system is being used to hoist a 50 kg engine block as shown below. If distance  is currently 1 meter and we assume
the pulleys are all frictionless, draw a free body diagram of the engine block with the attached pulley. Include all forces and
important angles.

Figure : problem diagram for Exercise ; an engine block is suspended by a cable with one end attached to an anchor
point and the other end passing over a pulley.

The car shown below has a weight of 4500 lbs and a center of mass at point G. Assuming the car is not moving and is sitting
on a level surface, draw a free body diagram of the car. Include all forces and important distances.

Figure : problem diagram for Exercise ; a car sitting on a level surface is marked with a point G indicating the
location of its center of mass.

A telephone pole sits on a rough surface. A cable attached to an excavator is then used to pull the pole along the surface as
shown below. Assume the telephone pole has a mass of 350 kg and a length of 12 meters. Draw a free body diagram of the
telephone pole. Include all forces, important distances, and important angles.

Exercise 1.8.1

d
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Figure : problem diagram for Exercise ; an excavator pulls a telephone pole across the ground at an angle, through
the use of a cable.

This page titled 1.8: Chapter 1 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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2.0: Chapter 2 Video Introduction

Video introduction to Chapter 2, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/VXhvhP8VBMY.

This page titled 2.0: Chapter 2 Video Introduction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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2.1: Static Equilibrium
Objects in static equilibrium are objects that are not accelerating (either linear acceleration or angular acceleration). These objects
may be stationary, such as a building or a bridge, or they may have a constant velocity, such as a car or truck moving at a constant
speed on a straight patch of road.

Figure : (left) Because this high rise building is stationary with no acceleration, the members
and overall structure are in equilibrium. Image by Jakembradford CC-BY-SA 4.0. (right):
Assuming that this truck is maintaining a constant speed and direction, this truck is in
equilibrium because its velocity is not changing over time. Public Domain image by Klever.

Newton's Second Law states that the force exerted on an object is equal to the mass of the object times the acceleration it
experiences. Therefore, if we know that the acceleration of an object is equal to zero, then we can assume that the sum of all forces
acting on the object is zero. Individual forces acting on the object, represented by force vectors, may not have zero magnitude but
the sum of all the force vectors will always be equal to zero for objects in equilibrium. Engineering statics is the study of objects in
static equilibrium, and the simple assumption of all forces adding up to zero is the basis for the subject area of engineering statics.

Equilibrium follows a similar pattern for angular accelerations. The rotational equivalent of Newton's Second Law states that the
moment exerted on an object is equal to the moment of inertia of that object times the angular acceleration of the object. If we
know the angular acceleration of an object is equal to zero, then we know the sum of all moments acting on the object is equal to
zero.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/2Ekp8MkgUYI.

This page titled 2.1: Static Equilibrium is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

2.1.1

∑ = mF ⃗  a⃗  (2.1.1)

a = 0 ; ∑ = 0F ⃗  (2.1.2)

∑ = IM⃗  α⃗  (2.1.3)

= 0 ; ∑ = 0α⃗  M⃗  (2.1.4)
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2.2: Point Forces as Vectors
A point force is any force where the point of application is considered to be a single point. In reality, most forces are technically
surface forces, where the force is applied over an area, but when the area is small enough (in comparison to the bodies being
analyzed) it can often be approximated as a point force. Because point forces can be represented as a single vector (rather than a
field of vectors for distributed forces), they are much easier to work with in engineering analysis. For this reason, point forces are
used in place of distributed forces in engineering analysis whenever possible. Below are some examples of where it is appropriate
to use point forces.

Figure : The tensions in the cables supporting this container can be treated as point forces pulling in the direction of the
cables. Adapted from Image by maxronnersjo CC-BY-SA 3.0.

Figure : The friction force between the bow and string on this cello can be treated as a point force. Adapted from Public
Domain image by Levi.

Figure : Though gravitational forces are technically body forces, they are often approximated as a single point force acting on
the center of gravity of the object. Adapted from Public Domain image, no author listed.

Figure : The gravitational force and the normal forces acting on each leg of this table can all be approximated as point forces.
Adapted from Public Domain image by Seahen.

In addition to the magnitude, direction, and point of application of the point force, another important term to understand is the line
of action of the force. The line of action of a force is the line along which the force acts. Given the direction and point of
application, one can find the line of action, but this term will be important in discussing concurrent forces and in the principle of
transmissibility.
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Figure : The line of action of a point force is the line along which the force acts.

Force Vector Representation: 
When vectors are drawn to form free body diagrams, the magnitude and direction are usually given in one of two formats:

Overall magnitude and angle(s) to indicate direction (often called magnitude and direction form).
Magnitudes in each of the coordinate directions (often called component form).

In either format we will need two values to fully define a force vector in a 2D system (either a magnitude and a single angle or a
magnitude in each of the two coordinate axes), and three values to fully define a force vector in a 3D system (either a magnitude
and two angles or a magnitude in each of the three coordinate axes). Below are some examples of force vectors in both
representations.

Figure : The same force can be represented with a magnitude and an angle, as shown in the left, or with magnitudes in relation
to each of the coordinate axes as shown on the right.

Figure : In three dimensions forces are represented with either a magnitude and two directions, as shown on the left, or with
magnitudes in relation to each of the three coordinate axes as shown on the right.

Changing Force Vector Forms: 

Because the two different forms of the vector are equivalent, we can switch between representations without changing the problem.
Often in engineering problems, it will initially be easier to write the force in magnitude and angle form, but later, analysis will be
easier if forces are written in component form. To switch from magnitude and direction form to component form you will use right
triangles and trigonometry to determine the component of the overall magnitude in each direction. This is a simple vector
decomposition, and more information on this process can be seen on the vector decomposition page. To switch back from
component form into magnitude and direction form you simply use the reverse of this initial process.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/kq8vqOKhKeA.

The tension force on the box below is given in magnitude and direction form. Redraw the diagram with the tension force given
in component form.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/ZERURXWnlDg.

The force acting on the cantilever beam shown below is given in component form. Redraw the diagram with the force given in
magnitude and direction form.

2.2 Point Forces - Video Lecture - JPM2.2 Point Forces - Video Lecture - JPM

Example 2.2.1
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Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/M3UjDfZzRHY.

The force shown below is given in magnitude and direction form. Redraw the diagram with the force vector given in
component form.

Solution

Point Forces - Adaptive Map Worked Point Forces - Adaptive Map Worked ……
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Video : Worked solution to example problem , delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/DroNv0TxnyA.

This page titled 2.2: Point Forces as Vectors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore
& Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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2.3: Principle of Transmissibility
The principle of transmissibility states that the point of application of a force can be moved anywhere along its line of action
without changing the external reaction forces on a rigid body. Any force that has the same magnitude and direction, and which
has a point of application somewhere along the same line of action will cause the same acceleration and will result in the same
moment. Therefore, the points of application of forces may be moved along the line of action to simplify the analysis of rigid
bodies.

Figure : Because of the principle of transmissibility, each of the above pairs is equivalent.

When analyzing the internal forces (stress) in a rigid body, the exact point of application does matter. This difference in stresses
may also result in changes in geometry which will in turn affect reaction forces. For this reason, the principle of transmissibility
should only be used when examining external forces on bodies that are assumed to be rigid.

Figure : The exact point of application of a force will impact how internal forces (stresses) are distributed, so the principle of
transmissibility cannot be applied when examining internal forces.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/sx__xzA7eqM.

This page titled 2.3: Principle of Transmissibility is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
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2.4: Concurrent Forces
A set of point forces is considered concurrent if all the lines of action of those forces all come together at a single point.

Figure : Because the lines of action for the gravitational force and the two tension forces line up at a single point, these forces
are considered concurrent.

Figure : Because the lines of action of the gravitational force and the two normal forces do not intersect at a single point, these
forces are not considered concurrent. Adapted from Public Domain image by Seahen.

Because the forces all act through a single point, there are no moments about this point. Because no moments exist, we can treat
this body as a particle. In fact, because real particles only exist in theory, most particle analysis is actually applied to extended
bodies with concurrent forces acting on them.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/puLnyApKfuc.

This page titled 2.4: Concurrent Forces is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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2.5: Equilibrium Analysis for Concurrent Force Systems
If a body is in static equilibrium, then by definition that body is not accelerating. If we know that the body is not accelerating then
we know that the sum of the forces acting on that body must be equal to zero. This is the basis for equilibrium analysis for a
particle.

In order to solve for any unknowns in our sum of forces equation, we actually need to turn the one vector equation into a set of
scalar equations. For two dimensional problems, we will split our one vector equation down into two scalar equations. We do this
by summing up all the  components of the force vectors and setting them equal to zero in our first equation, and summing up all
the  components of the force vectors and setting them equal to zero in our second equation.

We do something similar in three dimensional problems except we will break all our force vectors down into , , and 
components, setting the sum of  components equal to zero for our first equation, the sum of all the  components equal to zero for
our second equation, and the sum of all our  components equal to zero for our third equation.

Once we have written out the equilibrium equations, we can solve the equations for any unknown forces.

Finding the Equilibrium Equations: 
The first step in finding the equilibrium equations is to draw a free body diagram of the body being analyzed. This diagram
should show all the known and unknown force vectors acting on the body. In the free body diagram, provide values for any of the
know magnitudes or directions for the force vectors and provide variable names for any unknowns (either magnitudes or
directions).

Figure : The first step in equilibrium analysis is drawing a free body diagram. This is done by removing everything but the
body and drawing in all forces acting on the body. It is also useful to label all forces, key dimensions, and angles.

Next you will need to chose the , , and  axes. These axes do need to be perpendicular to one another, but they do not necessarily
have to be horizontal or vertical. If you choose coordinate axes that line up with some of your force vectors you will simplify later
analysis.

Once you have chosen axes, you need to break down all of the force vectors into components along the ,  and  directions (see
the vectors page in Appendix 1 if you need more guidance on this). Your first equation will be the sum of the magnitudes of the
components in the  direction being equal to zero, the second equation will be the sum of the magnitudes of the components in the 

 direction being equal to zero, and the third (if you have a 3D problem) will be the sum of the magnitudes in the  direction being
equal to zero. Collectively these are known as the equilibrium equations.

Once you have your equilibrium equations, you can solve them for unknowns using algebra. The number of unknowns that you
will be able to solve for will be the number of equilibrium equations that you have. In instances where you have more unknowns
than equations, the problem is known as a statically indeterminate problem and you will need additional information to solve for
the given unknowns.

x

y

∑ = 0F ⃗  (2.5.1)

∑ = 0 ; ∑ = 0Fx Fy (2.5.2)

x y z

x y

z

∑ = 0F ⃗  (2.5.3)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Fz (2.5.4)

2.5.1

x y z

x y z

x

y z

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/50576?pdf
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/02%3A_Static_Equilibrium_in_Concurrent_Force_Systems/2.05%3A_Equilibrium_Analysis_for_Concurrent_Force_Systems


2.5.2 https://eng.libretexts.org/@go/page/50576

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/Dbd9SvdfoN8.

The diagram below shows a 3-lb box (Box A) sitting on top of a 5-lb box (box B). Determine the magnitude and direction of
all the forces acting on box B.

Figure \(\
PageIndex

{2}\): problem diagram for Example \(\
PageIndex

{1}\); two stacked boxes sitting on a flat surface.

Solution

2.5 Equilibrium Analysis in Concurrent F2.5 Equilibrium Analysis in Concurrent F……

Example 2.5.1
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/J54OZSitzzM.

A 600-lb barrel rests in a trough as shown below. The barrel is supported by two normal forces (  and ). Determine the
magnitude of both of these normal forces.

Figure : problem diagram for Example ; a barrel resting in a trough with straight, angled sides.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/qKhZvf55Bc0.

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……

2.5.2 2.5.1

Example 2.5.2

F2 F3

2.5.3 2.5.2

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……
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A 6-kg traffic light is supported by two cables as shown below. Find the tension in each of the cables supporting the traffic
light.

Figure : problem diagram for Example ; a traffic light is held in midair by two cables, one horizontal and one
angled..

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Oi2yDg1SmrI.

A 400-kg wrecking ball rests against a surface as shown below. Assuming the wrecking ball is currently in equilibrium,
determine the tension force in the cable supporting the wrecking ball and the normal force that exists between the wrecking
ball and the surface.

Example 2.5.3

2.5.4 2.5.3

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……

2.5.4 2.5.3

Example 2.5.4
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Figure : problem diagram for Example ; a wrecking ball on a cable is resting against an angled surface.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/gETMTfy5Sew.

Barrels A and B are supported in a foot truck as seen below. Assuming the barrels are in equilibrium, determine all forces
acting on barrel B.

Figure : problem diagram for Example ; two barrels stacked on their sides are on a handcart, whose bottom is tilted
upwards.

2.5.5 2.5.4

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……

2.5.5 2.5.4

Example 2.5.5

2.5.6 2.5.5

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/50576?pdf
https://youtu.be/gETMTfy5Sew
https://www.youtube.com/watch?v=gETMTfy5Sew
https://www.youtube.com/watch?v=gETMTfy5Sew


2.5.6 https://eng.libretexts.org/@go/page/50576

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/8DgrClhT4AM.

Three soda cans, each weighing 0.75 lbs and having a diameter of 4 inches, are stacked in a formation as shown below.
Assuming no friction forces, determine the normal forces acting on can B.

Figure : problem diagram for Example ; three soda cans are stacked lying on their sides, in a flat area bounded on
two sides by walls.

Solution

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……

2.5.6 2.5.5

Example 2.5.6
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/lAUahV7Mml4.

The skycam shown below is supported by three cables. Assuming the skycam has a mass of 20 kg and that it is currently in a
state of equilibrium, find the tension in each of the three cables supporting the skycam.

Figure : problem diagram for Example ; a skycam is held in midair by 3 cables, whose angles in relation to a three-
dimensional coordinate plane are shown. Image by Jrienstra CC-BY-SA 3.0.

Solution

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……

2.5.7 2.5.6

Example 2.5.7
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/FD3yKyfXkGU.

A hot air balloon is tethered to the ground with three cables as shown below. If the balloon is pulling upwards with a force of
900 lbs, what is the tension in each of the three cables?

Figure : problem diagram for Example ; a hot-air balloon is tethered to the ground by 3 cables, whose points of
contact with the ground are given in relation to a three-dimensional coordinate plane. Adapted from image by L. Aragon CC-
BY-SA 3.0.

Solution

Equilibrium Analysis for Concurrent FEquilibrium Analysis for Concurrent F……

2.5.8 2.5.7

Example 2.5.8
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/HQqNGJR3ybQ.

This page titled 2.5: Equilibrium Analysis for Concurrent Force Systems is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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2.6: Chapter 2 Homework Problems

A 30 kg barrel is sitting on a handcart as shown below. Determine the normal forces at A and B.

Figure : problem diagram for Exercise ; a barrel sitting in a tilted handcart.

Answer

.

A 0.25kg ball rolls into a corner as shown below. Assuming the surfaces are smooth (no friction), determine the normal forces
at A and B.

Figure : problem diagram for Exercise ; a ball wedged into a narrow corner.

Answer

A traffic light is supported by two cables as shown below. The tension in cable one is measured to be 294.8 N. What is the
tension in cable two? What is the mass of the traffic light?

Exercise 2.6.1

2.6.1 2.6.1

= 147.15N ; = 254.87NFA FB

Exercise 2.6.2

2.6.2 2.6.2

= 1.09N ; = 3.01NFA FB

Exercise 2.6.3
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Figure : problem diagram for Exercise ; a traffic light suspended by two angled cables.

Answer

A 50 kg truck engine is lifted using the setup shown below. Assuming that the pulleys shown in the diagram are frictionless,
what force  must be applied to the cable to hold the engine in the position shown below with  = 1 meter? (Hint: Draw a free
body diagram of the pulley supporting the engine block)

Figure : problem diagram for Exercise ; an engine block suspended by a cable running through one anchor point and
one pulley.

Answer

Two weights are supported via cables as shown below. If body B has a weight of 60 pounds, what is the expected weight of
body A based on the angles of the cables?

2.6.3 2.6.3

= 276.6N ; m = 20 kgT2

Exercise 2.6.4

P d

2.6.4 2.6.4

P = 442.1N

Exercise 2.6.5
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Figure : problem diagram for Exercise ; two weights hanging from a single cable with fixed ends.

Answer

Three equally sized cylinders, each with mass 100 kg, are stacked in a groove as shown below. Determine all forces acting on
cylinder C and show them in a diagram.

Figure : problem diagram for Exercise ; three balls wedged in a groove with angled sides.

Answer

You are hanging a pterodactyl model from the ceiling of a museum with three cables as shown below. Assuming the
pterodactyl model has a mass of 260 kg, what is the tension we would expect in each of the three cables?

2.6.5 2.6.5

= 24.89 lbsFgA

Exercise 2.6.6

2.6.6 2.6.6

= 490.5N ; = 693.7N ; = 1304.6N ; = 829.7N ; = 981NFAC FBC FC1 FC2 Fg

Exercise 2.6.7
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Figure : problem diagram for Exercise ; a pterodactyl model hanging from the intersection of three unequally angled
cables attached to the ceiling.

Answer

A hot air balloon is tethered as shown below. Assuming that the balloon is pulling upward with a force of 900 lbs, determine
the tension in each of the cables.

Figure : problem diagram for Exercise ; a hot air balloon tethered to the ground by three unequally spaced cables.

Answer

This page titled 2.6: Chapter 2 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

2.6.7 2.6.7

= 2306.94N ; = 1393.86N ; = 2569.19NTA TB TC

Exercise 2.6.8

2.6.8 2.6.8

= 545.5 lbs; = 430.7 lbs; = 320.7 lbsTA TB TC
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3.0: Video Introduction to Chapter 3

Video introduction to the topics covered in Chapter 3, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/x_L6S6ohu-
k.

This page titled 3.0: Video Introduction to Chapter 3 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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3.1: Moment of a Force about a Point (Scalar Calculation)
The moment of a force is the tendency of some forces to cause rotation. Any easy way to visualize the concept is set a box on
smooth surface. If you were to apply a force to the center of the box, it would simply slide across the surface without rotating. If
you were instead to push on one side of the box, it will start rotating as it moves. Even though the forces have the same magnitude
and the same direction, they cause different reactions. This is because the off-center force has a different point of application, and
exerts a moment about the center of the box, whereas the force on the center of the box does not exert a moment about the box's
center point.

Figure : If we push a box in the center, it will simply begin sliding. If we push a box off-center, we will exert a moment and
the box will rotate in addition to sliding.

Just like forces, moments have a magnitude (the degree of rotation it would cause) and a direction (the axis the body would rotate
about). Determining the magnitude and direction of these moments about a given point is an important step in the analysis of rigid
body systems (bodies that are both rigid and not experiencing concurrent forces). The scalar method below is the easiest way to do
this in simple two-dimensional problems, while the alternative vector methods, which will be covered later, work best for more
complex three-dimensional systems.

The Scalar Method in 2 Dimensions 

In discussing how to calculate the moment of a force about a point via scalar quantities, we will begin with the example of a force
on a simple lever as shown below. In this simple lever there is a force on the end of the lever, distance  away from the center of
rotation for the lever (point A) where the force has a magnitude .

Figure : The magnitude of the moment that force  exerts about point A on this lever will be equal to the magnitude of the
force times distance .

When using scalar quantities, the magnitude of the moment will be equal to the perpendicular distance between the line of action of
the force and the point we are taking the moment about.

To determine the sign of the moment, we determine what type of rotation the force would cause. In this case, we can see that the
force would cause the lever to rotate counterclockwise about point A. Counterclockwise rotations are caused by positive moments
while clockwise rotations are caused by negative moments.

Another important factor to remember is that the value  is the perpendicular distance from the force to the point we are taking the
moment about. We could measure the distance from point A to the head of the force vector, or the tail of the force vector, or really
any point along the line of action of force . The distance we need to use for the scalar moment calculation, however, is the
shortest distance between the point and the line of action of the force. This will always be a line perpendicular to the line of action
of the force, going to the point about which we are taking the moment.

3.1.1

d

F

3.1.2 F

d

M = F ∗ d (3.1.1)

d

F
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Figure : Distance  always needs to be the shortest length between the line of action of the force and the point we are taking
the moment about. This distance will be perpendicular to the line of action of the force.

The Scalar Model in 3 Dimensions 
For three-dimensional scalar calculations, we will still find the magnitude of the moment in the same way, multiplying the
magnitude of the force by the perpendicular distance between the point and the line of action of the force. This perpendicular
distance again is the minimum distance between the point and the line of action of the force. In some cases, finding this distance
may be very difficult.

Figure : For moments in three dimensions, the moment vector will always be perpendicular to both the force vector  and the
distance vector .

Another difficult factor in three dimensional scalar problems is finding the axis of rotation, as this is now more complex that just
"clockwise or counterclockwise". The axis of rotation will be a line traveling though the point about which we are taking the
moment, and perpendicular to both the force vector and the perpendicular displacement vector (the vector going from the point
about which the moment was taken to the point of application of the force). While this is possible in any situation, it becomes very
difficult if the force or displacement vectors do not lie in one of the three coordinate directions.

To further find the direction of the moment vector (which will act along the established line for axis of rotation), we will use the
right-hand rule in a modified form. Wrap the fingers of your right hand around the axis of rotation line with your fingertips curling
in the direction the body would rotate. If you do this, your thumb should point out along the line in the direction of the moment
vector. This is an important last step, because we can rotate clockwise or counterclockwise in about any given axis of rotation. With
the final moment vector, we known not only the axis of rotation, but which way the body would rotate about that axis.

3.1.3 d

3.1.4 F ⃗ 

d ⃗ 
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Figure : To use the right-hand rule, align your right hand as shown so that your thumb lines up with the axis of rotation for the
moment and your curled fingers point in the direction of rotation for your moment. If you do this, your thumb will be pointing in
the direction of the moment vector. Adapted from Public Domain image by Schorschi2.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/15h8bIQDjGE.

What is the moment that Force A exerts about point A? What is the moment that Force B exerts about Point A?

Figure : problem diagram for Example ; a lever is attached to a wall with two forces exerted upon the lever's free
end.

Solution

3.1.5
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/E9Xq1fXdcyE.

What is the moment that this force exerts about point A? What is the moment this force exerts about point B?

Figure : problem diagram for Example ; a force is exerted upon one corner of a right triangle.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/9nb2q3EN5gs.
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What are the moments that each of the three tension forces exert about point A (the point where the beams come together)?

Figure : problem diagram for Example ; three tension forces are exerted on the free ends of two beams that lie
perpendicular to each other.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/2W9-K2KsTMU.

This page titled 3.1: Moment of a Force about a Point (Scalar Calculation) is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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3.2: Varignon's Theorem
Varignon's Theorem, also often called the principle of moments, is a very useful tool in scalar moment calculations. In cases
where the perpendicular distance is hard to determine, Varignon's Theorem offers an alternative to finding that distance.

In its basic form, Varignon's Theorem states that if we have two or more concurrent forces, the sum of the moments that each
force creates about a single point will be equal to the moment created by the sum of those forces about the same point.

Figure : If the sum of  and  is , then we can assume that the sum of the moments about point A exerted by  and 
 will be equal to the moment exerted about point A by .

On its surface this doesn't seem that useful, but in practice we will often use this theorem in reverse by breaking down a force into
components (the components being a set of concurrent forces). We can solve for the moment exerted by each component (where
perpendicular distance  is easier to find) and then simply add together the moments from each component to find the moment
from the original force.

Figure : When finding the moment of force  about the center point, it will be easier to break down the force into components
and find the moments of each component rather than trying to find the perpendicular distance directly using complex geometric
relationships.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/XcxXyPv7Wp4.
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Use Varignon's Theorem to find the moment that the forces in the diagram below exert about point A.

Figure : problem diagram for Example . A lever is attached to a wall at one end, and 3 different forces are applied to
the lever's free end, 0.5 m from the base's point of contact with the wall (point A).

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/JIpgZGxJWu4.

Use Varignon's Theorem to find the moment that the force in the diagram below exerts about point B.

Figure : problem diagram for Example . A rectangular box, which can be considered a two-dimensional shape, sits
on a flat surface and experiences a force applied to its upper right corner.

Solution

 Example 3.2.1
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/jpaLEprFndA.

This page titled 3.2: Varignon's Theorem is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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3.3: Couples
A couple is a set of equal and opposite forces that exerts a net moment on an object but no net force. Because the couple exerts a
net moment without exerting a net force, couples are also sometimes called pure moments.

Figure : The two equal and opposite forces exerted on this lug wrench are a couple. They exert a moment on the lug nut on
this wheel without exerting any net force on the wheel. Adapted from image by Steffen Heinz Caronna CC-BY-SA 3.0.

The moment exerted by a couple also differs from the moment exerted by a single force in that it is independent of the location you
are taking the moment about. In the example below we have a couple acting on a beam. Each force has a magnitude  and the
distance between the two forces is .

Figure : The moment exerted by this couple is independent of the of the distance .

Now we have some point A, which is distance  from the first of the two forces. If we take the moment of each force about point
A, and then add these moments together for the net moment about A we are left with the following formula.

If we rearrange and simplify the formula above, we can see that the variable  actually disappears from the equation, leaving the
net moment equal to the magnitude of the forces ( ) times the distance between the two forces ( ).

This means that no matter what value of  we have, the magnitude of the moment exerted by the couple will be the same. The
magnitude of the moment due to the couple is independent of the location we are taking the moment about. This will work in two
or three dimensions as well. The magnitude of the moment due to a couple will always be equal to the magnitude of the forces
times the perpendicular distance between the two forces.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/2U4APUz__Gk.

What is the moment that the couple below exerts about point A?

Figure : problem diagram for Example . A couple is applied to a rod, with each force being equidistant from point A
on the rod.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/rfD-b6V5qNY.

What is the moment that the couple below exerts about point A?
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 Example 3.3.1

3.3.3 3.3.1

Couples - Adaptive Map Worked ExaCouples - Adaptive Map Worked Exa……

3.3.2 3.3.1

 Example 3.3.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/50581?pdf
https://youtu.be/2U4APUz__Gk
https://youtu.be/rfD-b6V5qNY
https://www.youtube.com/watch?v=2U4APUz__Gk
https://www.youtube.com/watch?v=2U4APUz__Gk
https://www.youtube.com/watch?v=rfD-b6V5qNY
https://www.youtube.com/watch?v=rfD-b6V5qNY


3.3.3 https://eng.libretexts.org/@go/page/50581

Figure : problem diagram for Example . A couple is applied to a rod, with one force applied directly at point A and
the other being applied 1.5 meters to the right of A.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/s3-RJwKkH3Y.

This page titled 3.3: Couples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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3.4: Moment about a Point (Vector)
Given any point on an extended body, if there is a force acting on the body that does not travel through that point, then that force
will cause a moment about that point. As discussed on the moments page, a moment is a force's tendency to cause rotation.

The Vector Method in 2 and 3 Dimensions 
An alternative to calculating the moment via scalar quantities is to use the vector method or cross product method. For simple
two-dimensional problems, using scalar quantities is usually sufficient, but for more complex problems the cross product method
tends to be easier. The cross product method for calculating moments says that the moment vector of a force about a point will be
equal to the cross product of a position vector , from the point to anywhere on the line of action of the force, and the force vector
itself.

A big advantage of this method is that  does not have to be the shortest distance between the point and the line of action; it goes
from the point to any part of the line of action. For any problem, there are many possible  vectors, but because of the way the
cross product works, they should all result in the same moment vector in the end.

Figure : The moment vector of the force  about point A will be equal to the cross products of the  vector and the force
vector.  is a vector from point A to any point along the line of action of the force.

It is important to note here that all quantities involved are vectors: , and . Before you can solve for the cross product, you
will need to write out  and  in vector component form. You will need to write out all three components of these vectors: for two-
dimensional problems their  components will simply be zero, but those values are necessary for the calculations.

The moment vector you get will line up with the axis of rotation for the moment, where you can use the right-hand rule to
determine if the moment is going clockwise or counterclockwise about that axis.
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Figure : The result of  will give us the moment vector. For this two-dimensional problem, the moment vector is
pointing in the positive  direction. We can use the right-hand rule to determine the direction of rotation from the moment: line our
right thumb up with the moment vector and our curled fingers will point in the direction of rotation from the moment.

Finally, it is also important to note that taking the cross product, unlike multiplication, is not communicative. This means that the
order of the vectors matters, and  will not be the same as . It is important to always use  when calculating
moments.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/Jt2AE2yZFEQ.

What is the moment that this force exerts about point A? What is the moment this force exerts about point B?
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Figure : problem diagram for Example . A force is applied to one corner of a right triangle, producing moments
about the triangle's other corners.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/wn1xJZMpDY4.

Determine the moment that the tension in the cable exerts about the base of the pole (leave the moment in vector form). What
is the magnitude of the moment the tension exerts about this point?

Figure : problem diagram for Example ; a three-dimensional arrangement of an upright pole and a cable that
connects the pole to the ground.
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Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/ioqy98jZ0Vg.

This page titled 3.4: Moment about a Point (Vector) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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3.5: Moment of a Force About an Axis
It is sometimes useful to be able to calculate the moment a force exerts about a certain axis that is relevant to the problem. An
example would be a force on the vault door in the image below. If we took the moment about a point (such as one of the hinges on
the door), we may find that the moment vector does not line up with the axis of this hinge. In that case, the component of the
moment vector that lines up with the axis of the hinge will cause a rotation, while the component of the moment vector that does
not line up with the axis of the hinge will cause reaction moments in the hinge. If we are only interested in the rotation of the door,
we will want to find the moment that the force exerts specifically about the axis of the hinges.

Figure : The hinge on a door such as the one shown above will only allow for rotation along the axis of the hinge. Since this
corresponds to moments along the axis of the hinge, it may be useful to specifically calculate the moment a force exerts about the
axis of the hinge. Public Domain image, no author listed.

Calculating the Moment About an Axis via the Dot Product 

To find the moment of a force about a specific axis, we find the moment that the force exerts about some point on that axis and then
we find the component of the moment vector that lines up with the axis we are interested in.

To do this mathematically, we use the cross product to calculate the moment of the force about any point along the axis, and then
we take the dot product of a unit vector  along the axis and the moment vector we just calculated.

Figure : The moment of a force about an axis is the dot product of  and the cross product of  and .

The unit vector  has a magnitude of one and will be pointing in the direction of the axis we are interested in. Your final answer
from this operation will be a scalar value (having a magnitude but no direction). This is the magnitude of the moment about the
given axis, with the direction being specified by the unit vector .
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/FMu8XpvBAMo.

A flat L-shaped plate is attached via two hinges as shown in the diagram below. If force  acts on the plate as shown in the
diagram, what is the moment that force  exerts about the axis of the hinges?

Figure : problem diagram for Example ; a two-dimensional piece of metal experiences a force with components in
all three dimensions that causes the metal piece to rotate on hinges.

Solution

Video : Worked solution to example problem , delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/bP9iKRCCrAc.
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3.6: Equilibrium Analysis for a Rigid Body
For an rigid body in static equilibrium—that is, a non-deformable body where forces are not concurrent—the sum of both the
forces and the moments acting on the body must be equal to zero. The addition of moments (as opposed to particles, where we
only looked at the forces) adds another set of possible equilibrium equations, allowing us to solve for more unknowns as compared
to particle problems.

Moments, like forces, are vectors. This means that our vector equation needs to be broken down into scalar components before we
can solve the equilibrium equations. In a two-dimensional problem, the body can only have clockwise or counterclockwise rotation
(corresponding to rotations about the  axis). This means that a rigid body in a two-dimensional problem has three possible
equilibrium equations; that is, the sum of force components in the  and  directions, and the moments about the  axis. The sum
of each of these will be equal to zero.

For a two-dimensional problem, we break our one vector force equation into two scalar component equations.

The one moment vector equation becomes a single moment scalar equation.

If we look at a three-dimensional problem we will increase the number of possible equilibrium equations to six. There are three
equilibrium equations for force, where the sum of the components in the , , and  directions must be equal to zero. The body
may also have moments about each of the three axes. The second set of three equilibrium equations states that the sum of the
moment components about the , , and  axes must also be equal to zero.

We break the forces into three component equations.

Then we also break the moments into three component equations.

Finding the Equilibrium Equations 

As with particles, the first step in finding the equilibrium equations is to draw a free body diagram of the body being analyzed. This
diagram should show all the force vectors acting on the body. In the free body diagram, provide values for any of the known
magnitudes, directions, and points of application for the force vectors and provide variable names for any unknowns (either
magnitudes, directions, or distances).

Next you will need to choose the , , and  axes. These axes do need to be perpendicular to one another, but they do not
necessarily have to be horizontal or vertical. If you choose coordinate axes that line up with some of your force vectors you will
simplify later analysis.

Once you have chosen axes, you need to break down all of the force vectors into components along the ,  and  directions (see
the vectors page in Appendix 1 page for more details on this process). Your first equation will be the sum of the magnitudes of the
components in the  direction being equal to zero, the second equation will be the sum of the magnitudes of the components in the 

 direction being equal to zero, and the third (if you have a 3D problem) will be the sum of the magnitudes in the  direction being
equal to zero.

z

x y z

∑ = 0F ⃗  (3.6.1)

∑ = 0 ; ∑ = 0Fx Fy (3.6.2)

∑ = 0M⃗  (3.6.3)

∑ = 0Mz (3.6.4)

x y z

x y z

∑ = 0F ⃗  (3.6.5)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Fz (3.6.6)

∑ = 0M⃗  (3.6.7)

∑ = 0 ; ∑ = 0 ; ∑ = 0Mx My Mz (3.6.8)
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Next you will need to come up with the the moment equations. To do this you will need to choose a point to take the moments
about. Any point should work, but it is usually advantageous to choose a point that will decrease the number of unknowns in the
equation. Remember that any force vector that travels through a given point will exert no moment about that point. To write out the
moment equations, simply sum the moments exerted by each force (adding in pure moments shown in the diagram) about the given
point and the given axis, and set that sum equal to zero. All moments will be about the  axis for two-dimensional problems,
though moments can be about the ,  and  axes for three-dimensional problems.

Once you have your equilibrium equations, you can solve these formulas for unknowns. The number of unknowns that you will be
able to solve for will again be the number of equations that you have.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/OiJ2xbMIixY.

The car below has a weight of 1500 lbs with the center of mass 4 ft behind the front wheels of the car. What are the normal
forces on the front and the back wheels of the car?

Figure : problem diagram for Example . Adapted from the public domain image by Ebaychatter0.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/1LD5QW-70PA.
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A 5-meter-long beam has a fixed connection to a wall at point A and a force acting as shown at point B. What are the reaction
forces acting on the beam at point A?

Figure : problem diagram for Example . A horizontal beam attached to the wall at one end experiences a force
applied at its free end.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/JrVV7k1aQEk.

A ladder with negligible mass is supporting a 120-lb person as shown below. If the contact point at A is frictionless, and the
contact point at B is a rough connection, determine the forces acting at contact points A and B.

 Example 3.6.2

3.6.2 3.6.2

Equilibrium Equations for an ExtendeEquilibrium Equations for an Extende……

3.6.3 3.6.2

 Example 3.6.3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/51709?pdf
https://youtu.be/JrVV7k1aQEk
https://www.youtube.com/watch?v=JrVV7k1aQEk
https://www.youtube.com/watch?v=JrVV7k1aQEk


3.6.4 https://eng.libretexts.org/@go/page/51709

Figure : problem diagram for Example . A ladder with its base on a rough floor leans against a frictionless wall, with
a person standing on the ladder partway up.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/WzkAnPdhao4.

Member ABC is 6 meters long, with point B being at its midpoint. Determine all forces acting on member ABC.
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Figure : problem diagram for Example . A diagonal structural member is attached to the wall at one end, connected
to the wall via cable at its midpoint, and holding up a 300-kg load at its free end.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/sMQrjwUMpSQ.

While sitting in a chair, a person exerts the forces in the diagram below. Determine all forces acting on the chair at points A
and B. (Assume A is frictionless and B is a rough surface).
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Figure : problem diagram for Example . A chair is placed on a flat surface, with that surface assumed to be
frictionless where it contacts the chair's front leg (point A) and exerting friction where it contacts the back leg (point B).

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/nSOxK1ZMggA.

The trailer shown below consists of a deck with a weight of 250 lbs on an axle with wheels with a weight of 350 lbs. Assume
the weight forces act in the center of each component. If we wish the tongue weight ( ) of the unloaded trailer to be 50 lbs,
what is the distance  from the front where we must place the axle?

Figure : problem diagram for Example . A trailer consists of a flat rectangular deck on top of two wheels on an axle.

Solution

3.6.5 3.6.5
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/wpEBuitLD5s.

A 12-inch-by-24-inch flat steel sign is supported by two cables, each 6 inches from the edge of the sign. The sign has a weight
of 10 lbs, and the wind is causing the sign to sit at an angle of 10 degrees from vertical (the  axis). If we treat the wind as a
point force acting in the negative  direction on the center of the sign, how strong must the wind force be to cause this ten-
degree angle?

Figure : problem diagram for Example . A hanging sign experiences a wind whose direction points into the screen,
causing the sign to make a 10° angle with the plane of the screen.

Solution

Extended Body Equilibrium -AdaptiveExtended Body Equilibrium -Adaptive……
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/pR-0xbj8wF0.

A sixty-kilogram acoustic panel is suspended by three cables as shown below. Assuming the panel has a uniformly distributed
weight, what is the tension in each of the cables?

Figure : problem diagram for Example . A uniform rectangular panel is suspended from above by 3 cables located at
different points along its edges.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Kbsc1m0f9pQ.

Equilibrium Equations for an ExtendeEquilibrium Equations for an Extende……
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This page titled 3.6: Equilibrium Analysis for a Rigid Body is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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3.7: Chapter 3 Homework Problems

An 18-inch shelf is supported by a pin joint at point A, and a cable at point B. The shelf itself has a weight of 60 lbs. If we
want the net moment about point A to be zero, what should the tension in the cable be?

Figure : problem diagram for Exercise ; a horizontal shelf is attached to a wall with a pin joint at one end and a cable
at the other end.

Solution

What is the moment the force shown below exerts about Point A? About Point B?

Hint: use Varginon's Theorem.

Figure : problem diagram for Exercies ; a rectangular slab is bolted to a wall at two points, A and B, with a force is
exerted on one of the rectangle's unattached corners.

Solution

 Exercise 3.7.1

3.7.1 3.7.1

T = 52.30 lbs

 Exercise 3.7.2

3.7.2 3.7.2

= 10.88 kNmMA

= 21.02 kNmMB
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You are attempting to rotate a heavy table about the base of one leg at point O and are going to exert a 100-lb force at the
opposite end. Person A recommends pulling straight up, while person B recommends pulling up at 30° from vertical. What
would be the moment about point O, in inch-pounds, in either case?

Figure : problem diagram for Exercise ; a table is rotated about the base of one leg, with one of the two proposed
forces applied at the tabletop at the opposite end.

Solution

Determine the moment vectors that each of the three tension forces in the diagram below exerts about the origin point O.
Provide the answers in vector form with units.

Figure : problem diagram for Exercise ; two straight beams lying in the -plane, joined perpendicularly to each
other, experience 3 upward tension forces (in the +  direction).

Solution

 Exercise 3.7.3

3.7.3 3.7.3

= 6000 in-lbsMAO

= 6996.15 in-lbsMBO

 Exercise 3.7.4

3.7.4 3.7.4 xy
z

= [0, −400, 0] NmMAO

= [−300, 0, 0] NmMBO
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You exert a 50-lb force on the side of a fridge as shown below. Assuming the fridge is sitting on a rough surface and not
moving, what is the magnitude of the moment exerted by the couple consisting of the pushing force and the friction force?

Figure : problem diagram for Exercise ; a force is exerted on a refrigerator that sits on a flat surface, without causing
it to move.

Solution

A space station consists of a large ring that spins in order to provide an artificial gravity for the astronauts in the station. To
start the station spinning, a pair of thrusters is attached to the outside of the ring, each pointing in opposite directions as shown
below.

a) If we want to exert a 10 kN-m moment with the thrusters, and the ring has a diameter of 45 meters, what thrust force
should each thruster produce?

b) If we were to use the same thrusters on a 60-meter diameter ring, what moment would they exert?

Figure : problem diagram for Exercise . An example of the spinning ring-shaped space station as described in the
problem (left); a diagram of the locations and directions of the thruster forces on the ring (right).

Solution

a) 

b) 

= [300, 0, 0]NmMCO

 Exercise 3.7.5

3.7.5 3.7.5

M = −100ft-lbs

 Exercise 3.7.6

3.7.6 3.7.6

= 222.22 NFthruster

= 13.33 kNmMthruster
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A 60-N force is applied in the  plane, 40° from the  direction, on an L-shaped bar as shown below.

a) What is the moment vector this force exerts about point O?

b) What is the overall magnitude of the moment about point O?

Figure : problem diagram for Exercise ; an L-shaped bar lies in the  plane with one end located at the origin, point
O, and the other experiencing a force in the  direction.

Solution

What is the moment that the force shown in the diagram exerts about point O? About the axis of the cylindrical shaft (the -
axis)?

Figure : problem diagram for Exercise ; an L-shaped part that extends in the  and  directions, with one end located
at the origin O, experiences a force in the  direction applied at the opposite end.

Solution

 Exercise 3.7.7

yz y

3.7.7 3.7.7 xz
yz

= [−11.49, −11.57, 13.79] NmMO

|M | = 21.36 Nm

 Exercise 3.7.8

y

3.7.8 3.7.8 y z
xz

= [16484, 17046, −20979] in − lbsMO

= 17046 in − lbsMy
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The diving board shown below is supported by a pin joint at A and frictionless support at B. A 150-lb diver is standing at the
end of the board. Determine the reaction forces acting on the diving board at points A and B.

Figure : problem diagram for Exercise ; a diving board is supported by a pin joint at its leftmost end (point A) and a
frictionless support two feet to the right (point B), with a 150-lb diver standing 6 feet to the right of B.

Solution

A simplified crane is shown lifting a 400-kg load. The crane is supported by a pin joint at A, and a cable at B. Assuming the
crane arm is in equilibrium, what are the reaction forces at A and the tension at B?

Figure : problem diagram for Exercise ; a crane arm is attached to a vertical support at one end (A), is connected
to a horizontal cable at its midpoint (B), and lifts at a 400-kg load at the other end.

Solution

 Exercise 3.7.9

3.7.9 3.7.9

= 0FAX

= −450 lbsFAY

= 600 lbsFBY

 Exercise 3.7.10

3.7.10 3.7.10

= 9352.9 NFAX

= 3924 NFAY

= 9352.9 NTB
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An 8-foot ladder sits propped up against a wall at a 60-degree angle as shown below. It has a weight of 50 lbs acting at its
center point and supports a 120-lb woman 6 feet from the bottom. Assume that friction acts at the bottom of the ladder, but not
the top. What are the normal forces acting at the bottom and top of the ladder, and what is the friction force acting at the
bottom of the ladder?

Figure : problem diagram for Exercise ; an 8-ft ladder weighing 50 lbs and supporting a 120-lb woman who has
climbed 75% of the way up leans, at 60° above the horizontal, against a wall.

Solution

An SUV with a weight of 4200 lbs and a center of mass located as shown below is parked pointed downhill on a 10-degree
incline. The parking is engaged, locking up the back wheels but not the front wheels. What is the expected normal force at the
front wheels, the expected normal force at the back wheels, and the expected friction force at the back wheels assuming the
SUV does not slip?

Figure : problem diagram for Exercise ; an SUV with front and rear wheels 6 feet apart, and a center of mass 2
feet above the ground and 2 feet behind the front wheel, is parked pointing downhill on a 10° incline.

Solution

 Exercise 3.7.11

3.7.11 3.7.11

= 66.4 lbsFN T op

= 170 lbsFN Bottom

= 66.4lbsFf

 Exercise 3.7.12

3.7.12 3.7.12
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A cart with a mass of 3500 kg sits on an inclined surface as shown below. Determine the reaction forces acting on each wheel
of the cart as well as the tension in the cable supporting the cart.

Figure : a two-wheeled cart is parked facing uphill on a 30° slope. A cable stretches from the front of the cart to a
support on the incline, making a 38° angle with the plane of the incline.

Solution

The lighting rig above a stage consists of two 100-lb, uniform beams joined together in a T as shown below (assume the weight
acts in the center of each beam). The rig is supported by three cables at A, B, and C. Determine the tension in each of the three
cables.

Figure : problem diagram for Exercise ; two beams attached perpendicularly to each other lie in the  plane in a
T shape experience upward tension forces from 3 cables, one attached to each free end of the T.

Solution

= 729.3 lbsFf

= 3000.6 lbsFN front

= 1135.6 lbsFN back

 Exercise 3.7.13

3.7.13

T = 21786 N

= 7222 N ; = 35925 NFA FB

 Exercise 3.7.14

3.7.14 3.7.14 xy
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A 9-meter-long pole with a mass of 100 kg is suspended horizontally, 4 meters from the ceiling with three cables as shown
below. Assuming the center of mass of the pole is at the center point of the pole, what is the expected tension in each of the
three cables?

Figure : problem diagram for Exercise ; a pole hangs 4 meters below the ceiling, suspended by 3 cables attached
to the pole at different locations and angles.

Solution

This page titled 3.7: Chapter 3 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

= 50 lbs; = 66.7 lbs; = 83.3 lbsTA TB TC

 Exercise 3.7.15

3.7.15 3.7.15

= 357.66 N ; = 357.66 N ; = 408.75 NTA TB TC
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4.0: Video Introduction to Chapter 4

Video introduction to the topics covered in Chapter 4, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/jXY48L2sRR0.

This page titled 4.0: Video Introduction to Chapter 4 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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4.1: Statically Equivalent Systems
Two sets of forces are considered statically equivalent if they cause the same set of reaction forces on a body. Because this is
true, the two statically equivalent sets of forces are interchangeable in statics analysis.

Figure : A single 200-lb man standing at the center of a beam causes the same reaction forces as two 100-lb children standing
evenly along the beam as shown above. The weight force of the man is therefore statically equivalent to the weight forces of the
two children.

Determining if Forces are Statically Equivalent: 
To determine if two sets of forces are statically equivalent, you must solve for the reaction forces in both cases. If the reaction
forces are the same then the two sets of forces must be statically equivalent. For any one set of forces, there are an infinite number
of sets of forces that are statically equivalent to original set of forces.

Finding a Single Equivalent Point Force: 

In statics analysis, we are usually looking to simplify a problem by turning multiple forces into a single, statically equivalent force.
To find a single point force that is equivalent to multiple point forces you can use the following procedure.

1. Solve for the reaction forces in the original scenario.
2. Draw a new free body diagram with these reaction forces. You will also add one force with an unknown magnitude, direction,

and point of application to your diagram. This is the single point load that will be equivalent to your original set of forces.
3. Write out the equations of equilibrium for this scenario, including the known values for the reaction forces.
4. First, solve the force equations to find the  and  components of this unknown force (or ,  and  components for a 3D

problem). This can be used to find the magnitude and direction of the statically equivalent point force.
5. Next, use the moment equation (or equations, for 3D problems) to determine the location of the statically equivalent point force.
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Video : Lecture video covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/r0pwzQ_Ge00.

Determine if the two sets of forces shown below are statically equivalent.

Figure : problem diagram for Example ; two identical bars experience the same total magnitude and direction of
external force, applied in different locations and distributions.

Solution

Video : worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Xv5DyvQD29E.
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This page titled 4.1: Statically Equivalent Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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4.2: Resolution of a Force into a Force and a Couple
As discussed on the sections on moments, a force can have a tendency to cause both a linear and angular acceleration. For example,
below is diagram of a force acting on an extended body. If we were to think about everything relative to the center of mass of this
body, there would be some force acting on the center of mass that would cause the same linear acceleration and some pure moment
(couple) that would cause the same angular acceleration. This would be a force and couple that is statically equivalent to the
original force, though the point of application of the force changes.

Figure : The original force acting at A would cause both linear and angular acceleration. The force at B would cause the same
linear acceleration and the moment at B would cause the same angular acceleration. The force and the moment at B are statically
equivalent to the original force at A.

The process of transforming one force applied at one point, into a force and a couple at some other point is known as resolving a
force into a force and a couple. There are a few reasons that we may want to do this, but one primary reason is to find the
equivalent force couple system for a complex set of forces and moments. The equivalent force couple system is used to simplify
more complex analysis, and consists of a single force and a single pure moment (couple) that are statically equivalent to some more
complex combination of forces and moments. An important first step in finding the equivalent force couple system is to resolve all
the forces so that everything is acting at the same point.

In order to visualize the process of resolving a force into a force and a couple, you can use the process outlined in the diagram
below. Imagine we have a body with a force acting at some point A. We want to resolve the force into a force and a couple about
some other point B. To do this we will first add two forces to the diagram at point B. One will have the same magnitude and
direction as the original force and the other will be equal and opposite to the original force. Because these two forces are equal,
opposite, and collinear, this will not change the situation (it's the equivalent to adding zero to an equation). Now, with these three
forces acting on the diagram, we can break it down into two sets. The first is a force acting at point B with the same magnitude and
direction as the original force. The other two forces act as a couple, exerting a pure moment about point B. Finally, we can redraw
the system as a force acting at point B and the pure moment acting about point B.
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Figure : The process of resolving a force about some point A into a force and a couple about some point B.

As a shortcut to the process described above, we can also see that the force in the equivalent force couple system will always have
a magnitude and direction equal to the original force and the couple will be equal to the moment exerted by the original force about
the new point of application.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/sLixBOWBCuY.

Resolve the force shown below to a force and a couple acting at point A.

Figure : problem diagram for Example ; a rod experiences a single, upwards force applied 6 feet from the left end of
the rod (point A).

Solution
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Wfl3S_5FD0Q.

Resolve the force shown below to a force and a couple acting at point A.

Figure : problem diagram for Example ; a rod experiences a single force, pointing downwards and to the right,
applied 0.6 meters from the left end of the rod (point A).

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/1hRrKhWzf98.

This page titled 4.2: Resolution of a Force into a Force and a Couple is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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4.3: Equivalent Force Couple System
Every set of forces and moments has an equivalent force couple system. This is a single force and pure moment (couple) acting at
a single point that is statically equivalent to the original set of forces and moments.

Figure : Any set of forces on a body can be replaced by a single force and a single couple acting that is statically equivalent to
the original set of forces and moments. This set of an equivalent force and a couple is known as the equivalent force couple system.

To find the equivalent force couple system, you simply need to follow the steps below.

1. First, choose a point to take the equivalent force couple system about. Any point will work, but the point you choose will affect
the final values you find for the equivalent force couple system. Traditionally, this point will either be the center of mass of the
body or some connection point for the body.

2. Next, resolve all the forces not acting though that point to a force and a couple acting at the point you chose.
3. To find the "force" part of the equivalent force couple system, add together all the force vectors. This will give you the

magnitude and the direction of the force in the equivalent force couple system.
4. To find the "couple" part of the equivalent force couple system, add together any moment vectors (this could be moments

originally acting on the body, or moments from the resolution of the forces into forces and couples). This will give you the
magnitude and direction of the pure moment (couple) in the equivalent force couple system.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/bs6Tnlje3IU.

Find the equivalent force couple system for the forces shown below about point A.
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Figure : problem diagram for Example . An L-shaped part whose two arms connect at point A experiences a
rightwards force and a counterclockwise moment about the end of its vertical arm, as well as two downwards forces along its
horizontal arm.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/cw-rwBZef5w.

This page titled 4.3: Equivalent Force Couple System is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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4.4: Distributed Forces
A distributed force is any force where the point of application of the force is an area or a volume. This means that the "point of
application" is not really a point at all. Though distributed forces are more difficult to analyze than point forces, distributed forces
are quite common in real world systems so it is important to understand how to model them.

Distributed forces can be broken down into surface forces and body forces. Surface forces are distributed forces where the point
of application is an area (a surface on the body). Body forces are forces where the point of application is a volume (the force is
exerted on all molecules throughout the body). Below are some examples of surface and body forces.

Figure : The water pressure pushing on the surface of this dam is an example of a surface force. Image by Curimedia CC-BY-
SA 2.0.

Figure : The gravitational force on this apple is distributed over the entire volume of the fruit. Gravitational forces are an
example of body forces. Image by Zátonyi Sándor CC-BY 3.0.

Representing Distributed Forces: 
Distributed forces are represented as a field of vectors. This is drawn as a number of discrete vectors along a line, over a surface, or
over a volume, that are connected with a line or a surface as shown below.

Figure : This is a representation of a surface force in a 2D problem (a force distributed over a line). The magnitude is given in
units of force per unit distance.

Figure : This is a representation of a surface force in a 3D problem (a force distributed over an area). The magnitude is given
in units of force per unit area (also called a pressure).
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Though these representations show a discrete number of individual vectors, there is actually a magnitude and direction at all points
along the line, surface, or body. The individual vectors represent a sampling of these magnitudes and directions.

It is also important to realize that the magnitudes of distributed forces are given in force per unit distance, area, or volume. We must
integrate the distributed force over its entire range to convert the force into the usual units of force.

Analyzing Distributed Forces: 
For analysis purposes in statics and dynamics, we will usually substitute in a single point force that is statically equivalent to the
distributed force in the problem. This single point force is called the equivalent point load, and it will cause the same accelerations
or reaction forces as the distributed force while simplifying the math. However, in analysis that focuses on the strength of materials
where the bodies are not rigid, this substitution will not work as the distributed forces will not cause the same deformations and
stresses as the point force.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/VSIopUTg9kA.

This page titled 4.4: Distributed Forces is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

4.4 Distributed Forces - Video Lecture - 4.4 Distributed Forces - Video Lecture - ……

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/52455?pdf
https://youtu.be/VSIopUTg9kA
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/04%3A_Statically_Equivalent_Systems/4.04%3A_Distributed_Forces
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=VSIopUTg9kA
https://www.youtube.com/watch?v=VSIopUTg9kA


4.5.1 https://eng.libretexts.org/@go/page/52471

4.5: Equivalent Point Load
An equivalent point load is a single point force that will have the same effect on a body as the original loading condition, which is
usually a distributed force. The equivalent point load should always cause the same linear acceleration and angular acceleration as
the original force it is equivalent to (or cause the same reaction forces if the body is constrained). Finding the equivalent point load
for a distributed force often helps simplify the analysis of a system by removing the integrals from the equations of equilibrium or
equations of motion in later analysis.

Figure : If the body is unconstrained as shown on the left, the equivalent point load (shown as a solid vector) will cause the
same linear and angular acceleration as the original distributed load (shown with dashed vectors). If the body is constrained as on
shown on the right, the equivalent point load (shown as a solid vector) will cause the same reaction forces as the original
distributed force (shown with dashed vectors).

Finding the Equivalent Point Load 

When finding the equivalent point load, we need to find the magnitude, direction, and point of application of a single force that is
equivalent to the distributed force we are given. In this course we will only deal with distributed forces with a uniform direction, in
which case the direction of the equivalent point load will match the uniform direction of the distributed force. This leaves the
magnitude and the point of application to be found. There are two options available to find these values:

1. We can find the magnitude and the point of application of the equivalent point load via integration of the force functions.
2. We can use the area/volume and the centroid/center of volume of the area or volume under the force function.

The first method is more flexible, allowing us to find the equivalent point load for any force function that we can make a
mathematical formula for (assuming we have the skill in calculus to integrate that function). The second method is usually faster,
assuming that we can look up the values for the area or volume under the force curve and the values for the centroid or center of
volume for the area under the curve.

Using Integration in 2D Surface Force Problems: 

Figure : The block shown above has a distributed force acting on it. The force function relates the magnitude of the force to
the  position along the top of the box.

Finding the equivalent point load via integration always begins by determining the mathematical formula that is the force function.
The force function mathematically relates the magnitude of the force  to the position . In this case the force is acting along a
single line, so the position can be entirely determined by knowing the  coordinate, but in later problems we may also need to
relate the magnitude of the force to the  and  coordinates. In our example above, we can relate magnitude of the force to the
position by stating that the magnitude of the force at any point in Newtons per meter is equal to the  position in meters plus one.

The magnitude of the equivalent point load will be equal to the area under the force function. This will be the integral of the force
function over its entire length (in this case, from  to ).
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Now that we have the magnitude of the equivalent point load such that it matches the magnitude of the original force, we need to
adjust the position  such that it would cause the same moment as the original distributed force. The moment of the distributed
force will be the integral of the force function  times the moment arm about the origin . The moment of the equivalent
point load will be equal to the magnitude of the equivalent point load that we just found times the moment arm for the equivalent
point load . If we set these two things equal to one another and then solve for the position of the equivalent point load 
we are left with the following equation.

Now that we have the magnitude, direction, and position of the equivalent point load, we can draw the point load in our original
diagram. This point force can be used in place of the distributed force in further analysis.

Figure : The values for  and  that we have solved for are the magnitude and position of the equivalent point load.

Using the Area and Centroid in 2D Surface Force Problems: 
As an alternative to using integration, we can use the area under the force curve and the centroid of the area under the force curve
to find the equivalent point load's magnitude and point of application respectively.

Figure : The magnitude of the equivalent point load is equal to the area under the force function. Also, the equivalent point
load will travel through the centroid of the area under the force function.

The magnitude  of the equivalent point load will be equal to the area under the force function. We can find this area using
calculus, but there are often easier geometry-based ways of finding the area under the force function.

The equivalent point load will also travel through centroid of the area under the force function. This allows us to find the value
for . The centroid for many common shapes can be looked up in tables, and the parallel axis theorem can be used to determine
the centroid of more complex shapes (see the Appendix page on centroids for more details).
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Using Integration in 3D Surface Force Problems: 

Figure : The magnitude of the surface force in this example varies with both  and .

With surface force in a 3D problem, the force is distributed over a surface, rather than along a single line. To find the magnitude of
the equivalent point load we will again start by finding the mathematical equation for the force function. Because the force is
distributed over an area rather than just a line, the magnitude of the force may be related to both the  and the  coordinate, rather
than just the  coordinate as before.

The magnitude of the equivalent point load  will be equal to the volume under the force curve. To calculate this value we will
integrate the force function over the area that the force is applied to. To integrate this function  in terms of the area, we will
need to break the integral down further, integrating over  and then integrating over .

Once we solve for the magnitude of the equivalent point load, we can then solve for the position of the equivalent point load. Since
the force is spread over a surface, we will need to calculate both the   and the   coordinates for the position. The
process for solving for these values is similar to what was done with only an  value, except we change the moment arm value to
match the equivalent point load coordinate we are looking for.

In each of the equations above, we will need to expand out the area integral into  and  integrals (as we did for ) in order to be
able to solve them.

Using Volume and Center of Volume in 3D Surface Force Problems: 

Just as in the 2D problems, there are some available shortcuts to finding the equivalent point load in 3D surface force problems. For
a force spread over an area, the magnitude  of the equivalent point load will be equal to the volume under the force
function. The equivalent point load will also travel through the center of volume of the volume under the force function. This
should allow you to determine both  and .

The center of volume for a shape will be the same as the center of mass for a shape if the shape is assumed to have uniform density.
It should be possible to look these values up for common shapes in a table. Again, the parallel axis theorem can be used to find the
center of volume for more complex shapes (See the Center of Mass page in Appendix 2 for more details).

Using Integration in Body Force Problems: 

When we jump to body forces, the magnitude of our force will vary with , , and  coordinates. This means that our force
function can include all of these variables . To find the magnitude of the equivalent point load we integrate over the
volume, breaking the volume integral down into , , and then  integrals.
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To find the point of application of the equivalent point load, we will need to find all three coordinate positions. To do this, we will
expand out the equations we used with two coordinates to include the third coordinate .

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/eikERyUNIOo.

Determine the magnitude and the point of application for the equivalent point load of the distributed force shown below.

Figure : problem diagram for Example ; a bar attached to a wall experiences a distributed force whose magnitude
varies linearly over part of its length.

Solution
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/h_E0XjIJaiI.

Determine the magnitude and the point of application for the equivalent point load of the distributed force shown below.

Figure : problem diagram for Example ; a bar attached to a wall experiences a distributed force whose magnitude
varies quadratically over its length.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/D4JoQpOyI38.

Equivalent Point Load - Adaptive MaEquivalent Point Load - Adaptive Ma……
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Determine the magnitude and the point of application for the equivalent point load of the distributed force shown below.

Figure : problem diagram for Example ; a bar attached to a wall experiences a distributed force whose magnitude
varies linearly over part of its length and remains constant for the remainder.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/UbnfNAQctyg.

The wind has piled up sand into a corner on a building. The building supervisor is worried about the weight of the sand
pushing against the roof of the basement below. The function describing force of the sand pushing down on the surface is given
below. Find the magnitude, direction and point of application of the equivalent point load for the distributed force of the sand.
Draw the equivalent point load in a diagram.

Figure : problem diagram for Example ; sand accumulated in the corner of a building is assigned to a three-
dimensional coordinate system and the distributed force it exerts on the floor beneath it is described with a force equation.

Solution

Example 4.5.3

4.5.8 4.5.3
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/IaSe_g3_Mgk.
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Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

Equivalent Point Load - Adaptive MaEquivalent Point Load - Adaptive Ma……

4.5.5 4.5.4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/52471?pdf
https://youtu.be/IaSe_g3_Mgk
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/04%3A_Statically_Equivalent_Systems/4.05%3A_Equivalent_Point_Load
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=IaSe_g3_Mgk
https://www.youtube.com/watch?v=IaSe_g3_Mgk


4.6.1 https://eng.libretexts.org/@go/page/52472

4.6: Chapter 4 Homework Problems

Determine if the two systems below are statically equivalent.

Figure : part 1 of the problem diagram for Exercise . A horizontal bar held off the ground by two supports
experiences two point forces at different points along its length.

Figure : part 2 of the problem diagram for Exercise . A horizontal bar held off the ground by two supports
experiences a single point force partway along its length.

Solution

No, they are not equivalent.

Determine if the set of forces in A is statically equivalent to the set of forces and moments in B.

Figure : problem diagram for Exercise . Two uniform crosses of equal dimensions experience a set of forces (system
A, left) and a set of forces and moments (system B, right).

Solution

No, they are not equivalent.

Resolve the force shown below into a force and a couple acting at point A. Draw this force and couple on a diagram of the L-
shaped beam.

Exercise 4.6.1

4.6.1 4.6.1

4.6.2 4.6.1

Exercise 4.6.2

4.6.3 4.6.2

Exercise 4.6.3
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Figure : problem diagram for Exercise . An L-shaped beam is held parallel to the ground by a pin joint attached at
one end (point A), with a force applied to the other free end of the L shape.

Solution

 to the left

Find the equivalent force couple system acting at point A for the setup shown below. Draw this force and couple on a diagram
of the L-shaped beam.

Figure : problem diagram for Exercise . An L-shaped beam, whose arms intersect at the point A, experiences several
forces acting at different points along the arms.

Solution

° below the negative -axis

A helicopter is hovering with the wind force, the force from the tail rotor, and the moment due to drag shown below. Determine
the equivalent force couple system at point C. Draw the final force and moment on a new diagram of the helicopter.

4.6.4 4.6.3

= 150 NFA

= 450 NmMA

Exercise 4.6.4

4.6.5 4.6.4

= 155.2 lbs, 69.5FA x

= −556.9 ft lbsMA
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Figure : problem diagram for Exercise . A hovering helicopter with point C at the central hub of its main rotor
experiences a force applied at C, a moment about C, and a force applied at a distance from C.

Solution

 acting at ° below the negative -axis

Determine the equivalent point load (magnitude and location) for the distributed force shown below, using integration.

Figure : problem diagram for Exercise . A horizontal bar attached to a wall at one end experiences a distributed
force, which varies linearly, over part of its length.

Solution

 (measured from wall)

Determine the equivalent point load (magnitude and location) for the distributed force shown below, using integration.

4.6.6 4.6.5

= 858.01 NFeq 16.6 x

= −250 N mMeq

Exercise 4.6.6

4.6.7 4.6.6

= 105 NFeq

= 3.29 mxeq
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Figure : problem diagram for Exercise . A horizontal bar attached to a wall experiences a distributed force over its
length, with magnitude varying linearly according to a piecewise force function.

Solution

 (measured from wall)

Use the method of composite parts to determine the magnitude and location of the equivalent point load for the distributed
force shown below.

Figure : problem diagram for Exercise . A horizontal bar attached to a wall experiences a distributed force over its
length, with magnitude varying linearly according to a piecewise force function.

Solution

 (measured from wall)

This page titled 4.6: Chapter 4 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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5.0: Video Introduction to Chapter 5

Video introduction to the topics to be covered in Chapter 5, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/BJ8SdEUnt2U.

This page titled 5.0: Video Introduction to Chapter 5 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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5.1: Structures
An engineering structure is term used to describe any set of interconnected bodies. The different bodies in the structure can
move relative to one another (such as the blades in a pair of scissors) or they can be be fixed relative to one another (such as the
different beams connected to form a bridge).

Figure : This pair of scissors is an example of an engineering structure. The structure consists of three different bodies that are
interconnected. Adapted from Public Domain image by Comet27.

When analyzing engineering structures, we will sometimes analyze the structure as a whole, and we will sometimes break the
structure down into individual bodies that are analyzed separately. The exact methods used depend upon what unknown forces we
are looking for and what type of structure we are analyzing.

Internal and External Forces: 

When examining a single body, we would find the forces that this body exerted on surrounding bodies, and the forces that these
surrounding bodies would exert on the body we are analyzing. These forces are all considered external forces because they are
forces between the body and the external environment.

In an engineering structure, we still have external forces where the structure is interacting with bodies external to the structure, but
we also can think about the forces that different parts of the structure exert on one another (the force between the pin and the blade
in Figure , for example). Since both of these bodies are part of the structure we are analyzing, these forces are considered
internal forces.

If we only wish to determine the external forces acting on a structure, then we can treat the whole structure as a single body
(assuming the structure is rigid as a whole). If we wish to determine the internal forces acting between components in the structure,
then we will need to disassemble the structure into separate bodies in our analysis.

Types of Structures: 
Another important consideration when analyzing structures is the type of structure that is being analyzed. All structures fall into
one of three categories: trusses, frames, or machines. Frames and machines are analyzed in the same way so distinction between
them is less important, but the analysis methods used for trusses vary greatly from the analysis methods used for frames and
machines, so determining if a structure is a truss or not is an important first step in structure analysis.

Trusses: 

A truss is a structure that consists entirely of two-force members. If any one body in the structure is not a two-force member, then
the structure is either a frame or a machine. Also,in order to be a statically determinate truss (a truss where we can actually solve
for all the unknowns), the truss must be independently rigid as a whole. If different parts of the truss could move relative to one
another then the truss separated is not independently rigid.

5.1.1

5.1.1
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Figure : This bridge is an example of a truss. It consists of a number of members connected at only two points (the ends of the
beams). Public domain image by Leonard G.

A two-force member is a body where forces are applied at only two locations. If forces are applied at more than two locations, or if
any moments are applied, then the body is not a two-force member (see the two-force member page for more details). Because of
the unique assumptions we can make with two-force members, we can apply two unique methods to the analysis of trusses (the
method of joints and the method of sections) that we cannot apply to frames and machines (where we cannot assume we have two-
force members).

Frames and Machines: 

A frame or a machine is structure where at least one component of the structure is not a two-force member. This component will be
a body in the structure that has forces acting at three or more points on it. The difference between a frame and a machine is that a
frame is rigid as a whole, while a machine is not rigid as a whole.

Figure : The legs of this stool have forces applied to them in three locations (the top, the cross beams, and the floor). The stool
is also independently rigid, so this is a frame. Image by Besceh31 CC-BY-SA 2.5

Figure : Many pieces within this pair of locking pliers have forces applied to them at more than two locations. The pieces can
also move relative to one another, so this is an example of a machine. Image by Duk CC-BY-SA 3.0

Because frames and machines do not consist entirely of two-force members, we cannot make the assumptions that allow us to use
the method of joints and the method of sections. For this reason, we need to use a different analysis method (simply called the
analysis of frames and machines here).

5.1.2

5.1.3

5.1.4
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/5Hz8h7qEVEM.
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Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
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5.2: Two-Force Members
A two-force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a
two-force member in static equilibrium, the net force at each location must be equal, opposite, and collinear. This will result in all
two-force members being in either tension or compression, as shown in the diagram below.

Figure : The forces acting on two-force members need to be equal, opposite, and collinear for the body to be in equilibrium.

Why the Forces Must Be Equal, Opposite and Collinear: 

Imagine a beam where forces are only exerted at each end of the beam (a two-force member). The body has some non-zero force
acting at one end of the beam, which we can draw as a force vector. If this body is in equilibrium, then we know two things:

1. the sum of the forces must be equal to zero, and
2. the sum of the moments must be equal to zero.

In order to have the sum of the forces equal to zero, the force vector on the other side of the beam must be equal in magnitude and
opposite in direction. This is the only way to ensure that the sum of the forces is equal to zero with only two forces.

In order to have the sum of the moments equal to zero, the forces must be collinear. If the forces were not collinear, then the two
equal and opposite forces would form a couple. This couple would exert a moment on the beam when there are no other moments
to counteract the couple. Because the moment exerted by the two forces must be equal to zero, the perpendicular distance between
the forces  must be equal to zero. The only way to achieve this is to have the forces be collinear.

Figure : In order to have the sum of the moments be equal to zero, the forces acting on two-force members must always be
collinear, acting along the line connecting the two points where forces are applied.

Why Two-Force Members Are Important: 
By identifying two-force members, we greatly reduce the number of unknowns in our problem. In two-force members, we know
that the forces must act along the line between the two connection points on the body. This means that the direction of the force
vectors is known on either side of the body. Additionally, we know the forces are equal and opposite, so if we determine the
magnitude and direction of the force acting on one side of the body, we automatically know the magnitude and direction of the
force acting on the other side of the body.

5.2.1

(d)

5.2.2
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Figure : The forces in two-force members will always act along the line connecting the two points where forces are applied.

Two-force members are also important in distinguishing between trusses, and frames and machines. When we analyze trusses using
either the method of joints or the method of sections, we will assume everything is a two-force member. If this assumption is
incorrect, this will cause serious problems in the analysis. By making this assumption, though, we can use some shortcuts that will
make truss analysis easier and faster than the analysis of frames and machines.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/m3GhMaZwHJw.

This page titled 5.2: Two-Force Members is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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5.3: Trusses
A truss is an engineering structure that is made entirely of two-force members. In addition, statically determinate trusses (trusses
that can be analyzed completely using the equilibrium equations) must be independently rigid. This means that if the truss was
separated from its connection points, no one part would be able to move independently with respect to the rest of the truss.

Figure : Trusses are made entirely of two-force members. This means that each member will either be in tension or
compression, as shown here.

Trusses can be broken down further into plane trusses and space trusses. A plane truss is a truss where all members lie in a single
plane. This means that plane trusses can essentially be treated as two-dimensional systems. Space trusses, on the other hand, have
members that are not limited to a single plane. This means that space trusses need to be analyzed as a three-dimensional system.

Figure : The members of these trusses all lie in a single plane. These roof trusses are an example of a plane truss. Image by
Riisipuuro CC-BY-SA 3.0.

Figure : This bridge consists of two plane trusses connected by members called stringers. Adapted from image by ToddC4176
CC-BY-SA 3.0.

Figure : This roof supporting truss does not lie in a single plane. This is an example of a space truss. Image by IM3847 CC-
BY-SA 4.0.

5.3.1

5.3.2

5.3.3

5.3.4
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Figure : The power line tower also does not lie in a single plane and is therefore a space truss. Image by Anders Lagerås CC-
BY-SA 2.5.

Analyzing Trusses: 

When we talk about analyzing a truss, we are usually looking to identify not only the external forces acting on the truss structure,
but also the forces acting on each member internally in the truss. Because each member of the truss is a two force member, we
simply need to identify the magnitude of the force on each member, and determine if each member is in tension or compression.

To determine these unknowns, we have two methods available: the method of joints, and the method of sections. Both will give
the same results, but each through a different process.

The method of joints focuses on the joints, or the connection points where the members come together. We assume we have a pin at
each of these points that we model as a particle, we draw out the free body diagram for each pin, and then we write out the
equilibrium equations for each pin. This will result in a large number of equilibrium equations that we can use to solve for a large
number of unknown forces.

The method of sections involves pretending to split the truss into two or more different sections and then analyzing each section as
a separate rigid body in equilibrium. In this method we determine the appropriate sections, draw free body diagrams for each
section, and then write out the equilibrium equations for each section.

The method of joints is usually the easiest and fastest method for solving for all the unknown forces in a truss. The method of
sections, on the other hand, is better suited to targeting and solving for the forces in just a few members without having to solve for
all the unknowns. In addition, these methods can be combined if needed to best suit the goals of the problem solver.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/jn8sR-lS4tw.

This page titled 5.3: Trusses is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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5.4: Method of Joints
The method of joints is a process used to solve for the unknown forces acting on members of a truss. The method centers on the
joints or connection points between the members, and it is usually the fastest and easiest way to solve for all the unknown forces in
a truss structure.

Using the Method of Joints: 
The process used in the method of joints is outlined below.

In the beginning, it is usually useful to label the members and the joints in your truss. This will help you keep everything organized
and consistent in later analysis. In this book, the members will be labeled with letters and the joints will be labeled with numbers.

Figure : The first step in the method of joints is to label each joint and each member.

Treating the entire truss structure as a rigid body, draw a free body diagram, write out the equilibrium equations, and solve for the
external reacting forces acting on the truss structure. This analysis should not differ from the analysis of a single rigid body.

Figure : Treat the entire truss as a rigid body and solve for the reaction forces supporting the truss structure.

Assume there is a pin or some other small amount of material at each of the connection points between the members. Next you will
draw a free body diagram for each connection point. Remember to include:

Any external reaction or load forces that may be acting at that joint.
A normal force for each two force member connected to that joint. Remember that for a two force member, the force will be
acting along the line between the two connection points on the member. We will also need to guess if it will be a tensile or a
compressive force. An incorrect guess now though will simply lead to a negative solution later on. A common strategy then is
to assume all forces are tensile, then later in the solution any positive forces will be tensile forces and any negative forces will
be compressive forces.
Label each force in the diagram. Include any known magnitudes and directions and provide variable names for each unknown.

Figure : Drawing a free body diagram of each joint, we draw in the known forces as well as tensile forces from each two-force
member.

Write out the equilibrium equations for each of the joints. You should treat the joints as particles, so there will be force
equations but no moment equations. With either two (for 2D problems) or three (for 3D problems) equations for each joint; this
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should give you a large number of equations.
In planar trusses, the sum of the forces in the  direction will be zero and the sum of the forces in the  direction will be
zero for each of the joints.

In space trusses, the sum of the forces in the  direction will be zero, the sum of the forces in the  direction will be zero,
and the sum of forces in the  direction will be zero for each of the joints.

Finally, solve the equilibrium equations for the unknowns. You can do this algebraically, solving for one variable at a time, or
you can use matrix equations to solve for everything at once. If you assumed that all forces were tensile earlier, remember that
negative answers indicate compressive forces in the members.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/B8SEG7xPI-o.

Find the force acting in each of the members in the truss bridge shown below. Remember to specify if each member is in
tension or compression.

Figure : problem diagram for Example . A truss bridge represented as a 2D plane truss, with a standard-orientation 
-coordinate system.

Solution

x y

∑ = 0F ⃗  (5.4.1)

∑ = 0 ; ∑ = 0Fx Fy (5.4.2)

x y

z

∑ = 0F ⃗  (5.4.3)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Fz (5.4.4)
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/vowewkEdTzw.

Find the force acting in each of the members of the truss shown below. Remember to specify if each member is in tension or
compression.

Figure : problem diagram for Example . A plane truss mounted on a wall, with a standard-orientation -coordinate
system.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/IxnClZ-ppjM.
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Find the force acting in each of the members of the truss shown below. Remember to specify if each member is in tension or
compression.

Figure : problem diagram for Example . A space truss supported by a single ball-and-socket joint, oriented on a 3D
coordinate system with the -plane in the plane of the screen and the -axis pointing out of the screen.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/sDKESSbufEk.

This page titled 5.4: Method of Joints is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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5.5: Method of Sections
The method of sections is a process used to solve for the unknown forces acting on members of a truss. The method involves
breaking the truss down into individual sections and analyzing each section as a separate rigid body. The method of sections is
usually the fastest and easiest way to determine the unknown forces acting in a specific member of the truss.

Using the Method of Sections: 
The process used in the method of sections is outlined below.

1. In the beginning, it is usually useful to label the members in your truss. This will help you keep everything organized and
consistent in later analysis. In this book, the members will be labeled with letters.

Figure : The first step in the method of sections is to label each member.

2. Treating the entire truss structure as a rigid body, draw a free body diagram, write out the equilibrium equations, and solve for
the external reacting forces acting on the truss structure. This analysis should not differ from the analysis of a single rigid body.

Figure : Treat the entire truss as a rigid body and solve for the reaction forces supporting the truss structure.

3. Next, you will imagine cutting your truss into two separate sections. The cut should travel through the member that you are
trying to solve for the forces in, and should cut through as few members as possible. The cut does not need to be a straight line.

Figure : Next you will imagine cutting the truss into two parts. If you
want to find the forces in a specific member, be sure to cut through that member. It also makes things easier if you cut through
as few members as possible.

4. Next, you will draw a free body diagram for either one or both sections that you created. Be sure to include all the forces acting
on each section.

Any external reaction or load forces that may be acting at the section.
An internal force in each member that was cut when splitting the truss into sections. Remember that for a two-force member,
the force will be acting along the line between the two connection points on the member. We will also need to guess if it will
be a tensile or a compressive force. An incorrect guess now, though, will simply lead to a negative solution later on. A
common strategy then is to assume all forces are tensile; then later in the solution any positive forces will be tensile forces
and any negative forces will be compressive forces.
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Label each force in the diagram. Include any known magnitudes and directions and provide variable names for each
unknown.

Figure : Next, draw a free body diagram of one or both halves of the truss. Add the known forces, as well as unknown
tensile forces for each member that you cut.

5. Write out the equilibrium equations for each section you drew a free body diagram of. These will be extended bodies, so you
will need to write out the force and the moment equations.

For 2D problems you will have three possible equations for each section: two force equations and one moment equation.

For 3D problems you will have six possible equations for each section: three force equations and three moment equations.

6. Finally, solve the equilibrium equations for the unknowns. You can do this algebraically, solving for one variable at a time, or
you can use matrix equations to solve for everything at once. If you assumed that all forces were tensile earlier, remember that
negative answers indicate compressive forces in the members.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/XcRn776w22Q.

5.5.4

∑ = 0 ∑ = 0F ⃗  M⃗  (5.5.1)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Mz (5.5.2)

∑ = 0F ⃗  (5.5.3)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Fz (5.5.4)

∑ = 0M⃗  (5.5.5)

∑ = 0 ; ∑ = 0 ; ∑ = 0Mx My Mz (5.5.6)
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Find the forces acting on members BD and CE. Be sure to indicate if the forces are tensile or compressive.

Figure : problem diagram for Example . A two-dimensional representation of a truss bridge, with a standard-
orientation -coordinate system.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/9xxmHpLB1uU.

Find the forces acting on members AC, BC, and BD of the truss. Be sure to indicate if the forces are tensile or compressive.

Figure : Problem diagram for Example . A two-dimensional representation of a tower composed of trusses, arranged
in a tall rectangle made of rectangular subunits with a trapezoidal top.

Solution

Example 5.5.1
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Kp9U4d2qbvE.

This page titled 5.5: Method of Sections is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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5.6: Frames and Machines
A frame or a machine is an engineering structure that that contains at least one member that is not a two-force member.

Figure : This horizontal beam is connected to other members (where normal forces would exist) at more than two locations.
This beam is therefore not a two-force member.

Figure : This beam has two connection points, but a force is acting on a third point. Therefore the beam has forces acting on it
at more than two locations and it is not a two-force member.

A frame is a rigid structure, while a machine is not rigid. This means that no part can move relative to the other parts in a frame,
while parts can move relative to one another in a machine. Though there is a difference in vocabulary in describing frames and
machines, they are grouped together here because we use the same process to analyze both of these structures.

Figure : This stool contains non-two-force members (the legs) and no part can move relative to the other parts (it is rigid).
Therefore it is a frame. Image by Besceh31 CC-BY-SA 2.5.

Figure : This pair of locking pliers contains non-two-force members and has parts that can move relative to one another (it is
not rigid). Therefore it is a machine. Image by Duk CC-BY-SA 3.0.

Analyzing Frames and Machines: 
When we talk about analyzing frames or machines, we are usually looking to identify both the external forces acting on the
structure and the internal forces acting between members within the structure.

The method we use to analyze frames and machines (no special name here) centers around the process of breaking the structure
down into individual components and analyzing each component as a rigid body. Where the components are connected, Newton's
Third Law states that each body will exert an equal and opposite force on the other body. Each component will be analyzed as an
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independent rigid body leading to equilibrium equations for each component, but because of Newton's Third Law, some unknowns
may show up acting on two bodies.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/QY-zWXzL7aI.

This page titled 5.6: Frames and Machines is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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5.7: Analysis of Frames and Machines
The process used to analyze frames and machines involves breaking the structure down into individual components in order to
solve for the forces acting on each component. Sometimes the structure as a whole can be analyzed as a rigid body, and each
component can always be analyzed as a rigid body.

The Process for Analyzing Frames and Machines: 
1. In the beginning it is usually useful to label the members in your structure. This will help you keep everything organized and

consistent in later analysis. In this book, we will label everything by assigning letters to each of the joints.

Figure : The first step in the analysis of frames and machines is to
label the members.

2. Next you will need to determine if we can analyze the entire structure as a rigid body. In order to do this, the structure needs to
be independently rigid. This means that it would be rigid even if we separated it from its supports. If the structure is
independently rigid (no machines, and only some frames, will be independently rigid), then analyze the structure as a single
rigid body to determine the reaction forces acting on the structure. If the structure is not independently rigid, skip this step.

Figure : If, and only if, the structure is independently rigid, you should analyze the whole structure as a single rigid body
to solve for the reaction forces.

3. Next you will draw a free body diagram for each of the components in the structure. You will need to include all forces acting
on each member:

First, add any external reaction or load forces that may be acting on the components.
Second, identify any two-force members in the structure. At their connection points, they will cause a force with an
unknown magnitude but a known direction (the forces will act along the line between the two connection points on the
member).
Next, add in the reaction forces (and possibly moments) at the connection points between non-two-force members. For
forces with an unknown magnitude and direction (such as in pin joints), the forces are often drawn in as having unknown 
and  components ( ,  and  for 3D truss problems).
Remember that the forces at each of the connection points will be a Newton's Third Law pair. This means that if one
member exerts some force on some other member, then the second member will exert an equal and opposite force back on
the first. When we draw out our unknown forces at the connection points, we must make sure that the forces acting on each
member are opposite in direction.
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Figure \(\
PageIndex

{3}\):
Separate the structure into individual components and draw a free body diagram of each component. It is important to
remember that the forces at each connection point are a Newton's Third Law pair.

4. Write out the equilibrium equations for each component you drew a free body diagram of. These will be extended bodies, so
you will need to write out the force and the moment equations.

For 2D problems you will have three possible equations for each section: two force equations and one moment equation.

For 3D problems you will have six possible equations for each section: three force equations and three moment equations.

5. Finally, solve the equilibrium equations for the unknowns. You can do this algebraically, solving for one variable at a time, or
you can use matrix equations to solve for everything at once. If any force turns out to be negative, that indicates that the force
actually travels in the opposite direction from what is indicated in your initial free body diagram.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/6DK6IOU_TmU.

∑ = 0 ∑ = 0F ⃗  M⃗  (5.7.1)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Mz (5.7.2)

∑ = 0F ⃗  (5.7.3)

∑ = 0 ; ∑ = 0 ; ∑ = 0Fx Fy Fz (5.7.4)

∑ = 0M⃗  (5.7.5)

∑ = 0 ; ∑ = 0 ; ∑ = 0Mx My Mz (5.7.6)
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Find all the forces acting on each of the members in the structure below.

Figure : problem diagram for Example . A symmetrical A-shaped structure experiences an external force applied at
one point.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/ix2BuRGMGBs.

Find all the forces acting on each of the members in the structure below.

Example 5.7.1
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Figure : problem diagram for Example . A two-member structure is attached to a wall with pin joints and
experiences an external force applied at one point.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/TJjsz5Yt3Y0.

If two 150-Newton forces are exerted on the handles of the bolt cutter shown below, determine the reaction forces  and 
 exerted on the blades of the bolt cutter (this will be equal to the cutting forces exerted by the bolt cutters).

Figure : problem diagram for Example . Top-down view of a bolt cutter lying on a table facing left, divided into
members by labeled points.

Solution

5.7.5 5.7.2
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/uLsfSMzc5eQ.

A 100-lb force is exerted on one side of a TV tray as shown below. Assuming there are no friction forces at the base, determine
all forces acting on each of the three parts of the TV tray.

Figure : problem diagram for Example . Side view of a rectangular TV tray on two legs arranged in an X-shape,
with a downwards force applied on the tray.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/qi7WNDSb43k.

Analysis of Frames and Machines - AAnalysis of Frames and Machines - A……

5.7.4 5.7.3

Example 5.7.4

5.7.7 5.7.4

5.7 WP 004 - Analysis of Frames and 5.7 WP 004 - Analysis of Frames and ……

5.7.5 5.7.4
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5.8.1 https://eng.libretexts.org/@go/page/53663

5.8: Chapter 5 Homework Problems

Use the method of joints to solve for the forces in each member of the lifting gantry truss shown below.

Figure : problem diagram for Exercise . A two-dimensional representation of a lifting gantry truss, which
experiences a downwards force of 40 kN at one end.

Solution

 kN T,  kN C,  kN C

 kN T,  kN C

The truss shown below is supported by two cables at A and E, and supports two lighting rigs at D and F, as shown by the loads.
Use the method of joints to determine the forces in each of the members.

Figure : problem diagram for Exercise . A two-dimensional representation of a lighting support truss, which
experiences the weights of lighting rigs hung at two points.

Solution

 lbs T, ,  lbs C

 lbs T,  lbs T, 

 lbs C,  lbs T,  lbs T

The truss shown below is supported by a pin joint at A, a cable at D, and is supporting a 600 N load at point C. Use the method
of joints to determine the forces in each of the members. Assume the mass of the beams are negligible.

Exercise 5.8.1

5.8.1 5.8.1

= 113.14FAB = 80FAC = 120FBC

= 89.44FBD = 80FCD

Exercise 5.8.2

5.8.2 5.8.2

= 60FAB = 0FAC = 305.94FBC

= 300FBD = 120FCD = 0FCE

= 305.94FCF = 300FDF = 120FEF

Exercise 5.8.3
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Figure : problem diagram for Exercise . A two-dimensional representation of a truss connected to the wall at one
end, supported by a cable at the other, and experiencing a downwards force at one point.

Solution

 N C,  N T, 

 N C,  N T

The space truss shown below is being used to lift a 250 lb box. The truss is anchored by a ball-and-socket joint at C (which can
exert reaction forces in the , , and  directions) and supports at A and B that only exert reaction forces in the y direction. Use
the method of joints to determine the forces acting all members of the truss.

Figure : problem diagram for Exercise . A space truss attached to a wall at three points and supporting a load its free
end.

Solution

,  lbs T,  lbs C

 lbs T,  lbs C,  lbs T

Use the method of sections to solve for the forces acting on members CE, CF, and DF of the gantry truss shown below.

5.8.3 5.8.3

= 1162.97FAB = 709.86FAC = 0FBC

= 1162.97FBD = 709.86FCD

Exercise 5.8.4

x y z

5.8.4 5.8.4

= 0FAB = 144.33FAC = 204.09FAD

= 144.33FBC = 204.09FBD = 288.68FCD

Exercise 5.8.5
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Figure : problem diagram for Exercise . A two-dimensional representation of a gantry truss, which experiences
downwards forces applied at two points.

Solution

,  lbs C,  lbs T

You are asked to compare two crane truss designs as shown below. Find the forces in members AB, BC, and CD for Design 1
and find forces AB, AD, and CD for Design 2. What member is subjected to the highest loads in either case?

Figure : problem diagram for Exercise . Two versions of a crane truss design that differ only in the orientation of
their support beams.

Solution

Design 1:  lbs T,  lbs T,  lbs C

Design 2:  lbs T,  lbs C,  lbs C

The largest forces are in member CD for both designs.

The K truss shown below supports three loads. Assume only vertical reaction forces at the supports. Use the method of sections
to determine the forces in members AB and FG. (Hint: you will need to cut through more than three members, but you can use
your moment equations strategically to solve for exactly what you need).

5.8.5 5.8.5

= 0FCE = 306.2FCF = 300.2FDF

Exercise 5.8.6

5.8.6 5.8.6

= 11, 276FAB = 2902FBC = 18, 967FCD

= 13, 322FAB = 2902FAD = 16, 914FCD

Exercise 5.8.7

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/53663?pdf


5.8.4 https://eng.libretexts.org/@go/page/53663

Figure : problem diagram for Exercise . A two-dimensional representation of a K-truss which experiences
downwards forces applied at three points.

Solution

 lbs C,  lbs T

The truss shown below is supported by a pin support at A and a roller support at B. Use the hybrid method of sections and
joints to determine the forces in members CE, CF, and CD.

Figure : problem diagram for Exercise . A two-dimensional representation of a truss attached to a wall, experiencing
a downwards force at one point.

Solution

 kN T,  kN T,  kN C

The shelf shown below is used to support a 50-lb weight. Determine the forces on members ACD and BC in the structure.
Draw those forces on diagrams of each member.

5.8.7 5.8.7

= 1066.67FAB = 1066.67FFG

Exercise 5.8.8

5.8.8 5.8.9

= 21FCE = 8.41FCF = 4.67FCD

Exercise 5.8.9
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Figure : problem diagram for Example . Side view of a wall-mounted horizontal shelf supporting a weight at its free
end.

Solution

 lbs (Compression),  lbs,  lbs

A 20 N force is applied to a can-crushing mechanism as shown below. If the distance between points C and D is 0.1 meters,
what are the forces being applied to the can at points B and D? (Hint: treat the can as a two-force member)

Figure : problem diagram for Exercise . Side view of a wall-mounted can-crushing mechanism that holds a soda
can and experiences an applied force at its handle end.

Solution

 N (Compression)

The suspension system on a car is shown below. Assuming the wheel is supporting a load of 3300 N and assuming the system
is in equilibrium, what is the force we would expect in the shock absorber (member AE)? You can assume all connections are
pin joints.

5.8.9 5.8.9

= 223.6FBC = −200FAX
= −50FAY

Exercise 5.8.10

5.8.10 5.8.10

= 148.9Fcan

Exercise 5.8.11
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Figure : problem diagram for Exercise . Side view of the suspension system of one wheel of a car, experiencing
an upwards force on the wheel.

Solution

 N (Compression)

The chair shown below is subjected to forces at A and B by a person sitting in the chair. Assuming that normal forces exist at F
and G, and that friction forces only act at point G (not at F), determine all the forces acting on each of the three members in the
chair. Draw these forces acting on each part of the chair on a diagram.

Figure : problem diagram for Exercise . Side view of a folding chair with a square seat, facing to the left, that
experiences forces at two points from a person sitting in the chair.

Solution

 lbs,  lbs,  lbs

 lbs,  lbs

 lbs,  lbs

 lbs,  lbs

This page titled 5.8: Chapter 5 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

5.8.11 5.8.11

= 4611.9FAE

Exercise 5.8.12

5.8.12 5.8.12

= 108.3FF = −3.95FGX
= 39.5FGY

= ± 16.89FCX = ± 295.4FCY

= ± 142.9FDX
= ± 147.7FDY

= ± 112.9FEX
= ± 256.0FEY
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6.0.1 https://eng.libretexts.org/@go/page/50593

6.0: Video Introduction to Chapter 6

Video introduction to the topics covered in Chapter 6, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/ltBEDVYnFbE.

This page titled 6.0: Video Introduction to Chapter 6 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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6.1.1 https://eng.libretexts.org/@go/page/50594

6.1: Dry Friction
Dry friction is the force that opposes one solid surface sliding across another solid surface. Dry friction always opposes the
surfaces sliding relative to one another, and it can have the effect of either opposing motion or causing motion in bodies.

Figure : Dry friction occurs between the bottom of this training sled and the grassy field. The dry friction would oppose the
motion of the sled along the field in this case. Image by Avenue CC-BY-SA 3.0

Figure : Dry friction occurs between the tires and the road for this motorcycle. The dry friction force for this motorcycle is
what allows it to accelerate, decelerate, and turn. Public Domain image by Takisha Rappold.

The most commonly used model for dry friction is coulomb friction. This type of friction can further be broken down into static
friction and kinetic friction. These two types of friction are illustrated in the diagram below. First, imagine a box sitting on a
surface. A pushing force is applied parallel to the surface and is constantly being increased. A gravitational force, a normal force,
and a frictional force are also acting on the box.

Figure : As the pushing force increases, the static friction force will be equal in magnitude and opposite in direction until the
point of impending motion. Beyond this point, the box will begin to slip as the pushing force is greater in magnitude than the
kinetic friction force opposing it.

Static friction occurs prior to the box slipping and moving. In this region, the friction force will be equal in magnitude and
opposite in direction to the pushing force itself. As the magnitude of the pushing force increases, so does the magnitude of the
friction force.

If the magnitude of the pushing force continues to rise, eventually the box will begin to slip. As the box begins to slip, the type of
friction opposing the motion of the box changes from static friction to what is called kinetic friction. The point just before the box
slips is known as impending motion. This can also be thought of as the maximum possible static friction force before slipping.
The magnitude of the maximum static friction force is equal to the static coefficient of friction times the normal force existing
between the box and the surface. This coefficient of friction is a property that depends on both materials and can usually be looked
up in tables.

6.1.1

6.1.2

6.1.3
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Kinetic friction occurs beyond the point of impending motion, when the box is sliding. With kinetic friction, the magnitude of the
friction force opposing motion will be equal to the kinetic coefficient of friction times the normal force between the box and the
surface. The kinetic coefficient of friction also depends upon the two materials in contact, but will almost always be less than the
static coefficient of friction.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/OPRc38nDpKo.

A 500 lb box is sitting on concrete floor. If the static coefficient of friction is 0.7 and the kinetic coefficient of friction is 0.6:

What is the friction force if the pulling force is 150 lbs?
What pulling force would be required to get the box moving?
What is the minimum force required to keep the box moving once it has started moving?

Figure : problem diagram for Example . A box experiences a pulling force towards the right.

Solution

7.1 Dry Friction - Video Lecture - JPM7.1 Dry Friction - Video Lecture - JPM

Example 6.1.1

6.1.4 6.1.1
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/7R7kvKBxUjw.

A 30 lb sled is being pulled up an icy incline of 25 degrees. If the static coefficient of friction between the ice and the sled is
0.4 and the kinetic coefficient of friction is 0.3, what is the required pulling force needed to keep the sled moving at a constant
rate?

Figure : problem diagram for Example . A sled with a pulling force applied to move it up a 25° incline.

Solution

Dry Friction - Adaptive Map Worked EDry Friction - Adaptive Map Worked E……

6.1.2 6.1.1

Example 6.1.2

6.1.5 6.1.2
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/oPMx-SZyiy4.

A plastic box is sitting on a steel beam. One end of the steel beam is slowly raised, increasing the angle of the surface until the
box begins to slip. If the box begins to slip when the beam is at an angle of 41 degrees, what is the static coefficient of friction
between the steel beam and the plastic box?

Figure : problem diagram for Example . A box on a steel beam whose left end has been raised until it is at 41° above
the horizontal.

Solution

Dry Friction - Adaptive Map Worked EDry Friction - Adaptive Map Worked E……

6.1.3 6.1.2

Example 6.1.3

6.1.6 6.1.3
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/ShGP5rzIHN4.

This page titled 6.1: Dry Friction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

Dry Friction - Adaptive Map Worked EDry Friction - Adaptive Map Worked E……

6.1.4 6.1.3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/50594?pdf
https://youtu.be/ShGP5rzIHN4
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/06%3A_Friction_and_Friction_Applications/6.01%3A_Dry_Friction
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=ShGP5rzIHN4
https://www.youtube.com/watch?v=ShGP5rzIHN4


6.2.1 https://eng.libretexts.org/@go/page/50595

6.2: Slipping vs Tipping
Imagine a box sitting on a rough surface as shown in the figure below. Now imagine that we start pushing on the side of the box.
Initially the friction force will resist the pushing force and the box will sit still. However, as we increase the force pushing the box
one of two things will occur.

1. The pushing force will exceed the maximum static friction force and the box will begin to slide across the surface (slipping).
2. Or, the pushing force and the friction force will create a strong enough couple that the box will rotate and fall on its side

(tipping).

Figure : As the pushing force increases on the box, it will either begin to slide along surface (slipping) or it will begin to rotate
(tipping).

When we look at cases where either slipping or tipping may occur, we are usually interested in finding which of the two options
will occur first. To determine this, we usually determine both the pushing force necessary to make the body slide and the pushing
force necessary to make the body tip over. Whichever option requires less force is the option that will occur first.

Determining the Force Required to Make an Object "Slip": 

A body will slide across a surface if the pushing force exceeds the maximum static friction force that can exist between the two
surfaces in contact. As in all dry friction problems, this limit to the friction force is equal to the static coefficient of friction times
the normal force between the body. If the pushing force exceeds this value then the body will slip.

Figure : If the pushing force exceeds the maximum static friction force  then the body will begin to slide.

Determining the Force Required to Make an Object "Tip": 

The normal forces that support bodies are distributed forces. These forces will not only prevent the body from accelerating into the
ground due to gravitational forces, but they can also redistribute themselves to prevent a body from rotating when forces cause a
moment to act on the body. This redistribution will result in the equivalent point load for the normal force shifting to one side or the
other. A body will tip over when the normal force can no longer redistribute itself any further to resist the moment exerted by other
forces (such as the pushing force and the friction force).

6.2.1

6.2.2 ( ∗ )μs FN
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Figure : At rest (A) the normal force is a uniformly distributed force on the bottom of the body. As a pushing force is applied
(B) the distributed normal force is redistributed, moving the equivalent point load to the right. This creates a couple between the
gravity force and the normal force that will counter the couple exerted by the pushing force and the friction force. If the pushing
force becomes large enough (C), the couple exerted by the gravitational force and the normal force will be unable to counter the
couple exerted by the pushing force and the friction force.

The easiest way to think about the shifting normal force and tipping is to imagine the equivalent point load of the distributed
normal force. As we push or pull on the body, the normal force will shift to the left or right. This normal force and the gravitational
force create a couple that exerts a moment. This moment will be countering the moment exerted by the couple formed by the
pushing force and the friction force.

Because the normal force is the direct result of physical contact, we cannot shift the normal force beyond the surfaces in contact
(i.e., the edge of the box). If countering the moment exerted by the pushing force and the friction force requires shifting the normal
force beyond the edge of the box, then the normal force and the gravity force will not be able to counter the moment and as a result
the box will begin to rotate (i.e., tip over).

Figure : The body will tip when the moment exerted by the pushing and friction forces exceeds the moment exerted by the
gravity and normal forces. For impending motion, the normal force will be acting at the very edge of the body.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/M2OZOkgVRBQ.

6.2.2

6.2.3

7.2 Slipping vs. Tipping - Video Lecture -7.2 Slipping vs. Tipping - Video Lecture -……
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The box shown below is pushed as shown. If we keep increasing the pushing force, will the box first begin to slide or will it tip
over?

Figure : problem diagram for Example . A box on a flat surface, with a coefficient of static friction of 0.62 between
the two surfaces, experiences a pushing force at a point on its left side.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/TeYgkfd4rTA.

What is the maximum value of  that will allow the box to slide along the surface before tipping?

Figure : problem diagram for Example . A box on a flat surface, with a coefficient of static fricton of 0.62 between
the two surfaces, experiences a pushing force at a point of unknown height (  on its left side.
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Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/STDWwJsng6k.

This page titled 6.2: Slipping vs Tipping is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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6.3: Wedges
A wedge is a thin, inclined-plane-shaped object that is used to force two objects apart or to force one object away from a nearby
surface. Wedges have the effect of allowing users to create very large normal forces to move objects with relatively small input
forces. The friction forces in wedge systems also tend to be very large, though, and can reduce the effectiveness of wedges.

Figure : A hammer is used to push this wedge into the crack in this log. The normal forces are pushing the two halves of the
log apart while the friction forces are opposing the pushing force. Adapted from image by Luigi Chiesa. CC-BY-SA-3.0.

To analyze a wedge system, we will need to draw free body diagrams of each of the bodies in the system (the wedge itself and any
bodies the wedge will be moving). We need to be sure that we include the pushing force on the wedge, normal forces along any
surfaces in contact, and friction forces along any surfaces in contact.

Figure : The top diagram shows a wedge being used to push a safe away from a wall. The first step in analyzing the system is
to draw free body diagrams of the wedge and the safe. Remember that all normal forces will be perpendicular to the surfaces in
contact and that all friction forces will be parallel to the surfaces in contact.

After we draw the free body diagram, we can work to simplify the problem. It is usually assumed that the wedge and the bodies
will be sliding against one another, so each friction force will be equal to the kinetic coefficient of friction between the two surfaces
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times the associated normal force between the two forces. This reduces the number of unknowns and will usually allow us to solve
for any unknown values.

Figure : By replacing each of the friction forces with the kinetic coefficient of friction times the normal force, we can reduce
the number of unknowns in our analysis.

With our simplified diagram, we will assume that the bodies are all in equilibrium and write out equilibrium equations for the two
bodies. By solving the equilibrium equations, we can solve for any unknowns we have.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/5R3S5bYBULY.

A heavy safe is being pushed away from a wall with a wedge as shown below. Assume the wedge has an angle of 5 degrees,
the coefficient of friction (static and kinetic) between the wedge and the safe is 0.16, and the coefficients of friction (static and
kinetic) between the wedge and the wall and the safe and the floor are both 0.35. What is the pushing force required to move
the safe out from the wall?
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Figure : problem diagram for Example . A point-down wedge, with a pushing force applied at its base, is used to pry
a safe away from a wall.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/r7Ut0GI8q00.

A wedge as shown below is being used to lift the corner of the foundation of a house. How large must the pushing force be to
exert a lifting force of one ton (2000 lbs)?

Figure : problem diagram for Example . A wedge is used to lift a block on a 10° incline with a force of 2000 lbs;
coefficients of friction are given as 0.15 between the block and wedge, and 0.05 between the incline and the wedge.

Solution
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/kgfh4Mna63M.

This page titled 6.3: Wedges is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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6.4: Power Screws
A power screw (also sometimes called a lead screw) is another simple machine that can be used to create very large forces. The
screw can be thought of as a wedge or a ramp that has been wound around a shaft. By holding a nut stationary and rotating the
shaft, we can have the nut sliding either up or down the wedge in the shaft. In this way, a relatively small moment on the shaft can
cause very large forces on the nut.

Figure : The screw in this cider press is rotated with the handle on the top. The stationary nut on the frame of the press forces
the shaft downward as it is turned. Public Domain image by Daderot.

Figure : By rotating the screw in this scissor jack, the user can move the nut (on the left end) closer or further from the anchor
on the right end, which will raise or lower the car. Public Domain image by nrjfalcon1.

Static Analysis of Power Screws: 
The easiest way to analyze a power screw system is to turn the problem into a 2D problem by "unwrapping" the ramp from around
the shaft. To do this we will need two numbers. First we will need the diameter of the shaft, and second we will need either the
threads-per-inch/centimeter or the pitch of the screw. The threads-per-inch tells you how many threads you have per
inch/centimeter of screw. With a single thread design (most screws) this will also be the number of times the thread wraps around
the screw in one inch/centimeter. The pitch, on the other hand, gives you the distance between two adjacent threads. Either of these
numbers can be used to find the other.

Once we have these numbers, we can imagine unwrapping the ramp from around the screw and ending up with a ramp in one of the
two situations below. In either case, we can use the inverse tangent function to find the lead angle, which can be thought of as the
angle of the thread that the nut is climbing up. Finding the lead angle is the first step in analyzing a power screw system.

Figure : The lead angle of a screw is the angle of the thread that the nut will be climbing up as the shaft rotates.

Once we find the lead angle, we can draw a free body diagram of the "nut" in our unwrapped system. Here we include the pushing
force which is pushing our nut up the incline, the load force which is the force the nut exerts on some external body, the normal
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force between the nut and screw, and the friction force between the nut and the screw.

Figure : The free body diagram of the "nut" in our power screw system, with a standard-orientation -coordinate system.

If our screw is pushing a load at some constant rate, then we can assume two things: First, the nut is in equilibrium, so we can write
out the equilibrium equations for the nut. Second, the nut is sliding, indicating that the friction force will be equal to the normal
force times the kinetic coefficient of friction.

We can then simplify the equations above into a single equation relating the load force and the pushing force.

In reality, the pushing force is not a single force at all. It is the forces preventing the nut from rotating with the screw. The
cumulative pushing force will really cause an equal and opposite moment to the input moment that is spinning the shaft.

Figure : The pushing force is really just a representation of the forces keeping the nut from rotating. If the nut is not rotating,
then these forces must cause an equal and opposite moment to the torque that is driving the screw.

Finally, if we replace the pushing force with the moment that is driving the screw in our system (in this case the torque ), we can
relate the input torque that is driving our screw to the force that the nut on the screw is pressing forward with. Screw systems are
usually designed to allow fairly small input moments to push very large load forces.

Self-Locking Screws 
Imagine that we apply a torque to a power screw to lift a body; then when we get the load to the desired height we stop applying
that torque to let the body sit where it is. If we were to redraw our free body diagram from earlier for the new situation, we would
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find two things.

1. The pushing force is missing (since a torque is no longer applied to the shaft).
2. The friction is now fighting against the nut sliding back down the ramp.

Figure : Without the pushing force from an applied torque, the friction force acts to prevent the nut from sliding down the
ramp.

With this new free body diagram, there are two possible scenarios that could occur:

1. The friction force is large enough to keep the nut from sliding down the ramp, meaning everything will remain in static
equilibrium if released.

2. The friction force will not be sufficient to keep the nut from sliding down the ramp, meaning that the load would begin to fall as
soon as the torque is removed from the shaft.

With power screw applications such as a car jack, the second option could be very dangerous. It is therefore important to know if a
power screw system is self-locking (scenario 1 above) or not self-locking (scenario 2 above).

To define the boundary between self-locking systems and non-self-locking systems, we use something called the self-locking
angle. As intuition would tell us, slipping does not occur on very gentle slopes (small lead angles) while it does occur on very steep
slopes (large lead angles). The angle at which the nut would begin to slip is known as the self-locking angle.

To find the self-locking angle, we will assume impending motion (relating the friction force to the normal force) and leave the lead
angle as an unknown. This lets us create the free body diagram as shown below and gives us the equilibrium equations below.

Figure : To find the self-locking angle we will assume impending motion. We then draw our free body diagram (above) and
write out our equilibrium equations (below) accordingly.

Using the  equilibrium equation as a starting point, we can solve for the angle  (eliminating the normal force all together in the
process). This new equation shown below gives us the self-locking angle.
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Systems with lead angles smaller than this will be self-locking, while systems with lead angles larger than this will not be self-
locking.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/mci-kH14JGw.

The power screw below is being used to lift a platform with a weight of 12 pounds. Based on the information below...

What is the required torque on the shaft to lift the load?
Would the load fall if the toque was removed from the shaft?

Figure : problem diagram for Example . A power screw with a 0.375-inch screw diameter, 12 threads per inch, is
used to lift a platform, with a coefficient of static and kinetic friction of 0.16.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/uB2r3AtxCRs.

This page titled 6.4: Power Screws is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
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6.5: Bearing Friction
A bearing is the machine element used to support a rotating shaft. Bearing friction is the friction that exists between the rotating
shaft and bearing that is supporting that shaft. Though many types of bearings exist (plain, ball, roller, hydrodynamic), in this
course we will only be looking at plain bearings, also sometimes called journal bearings.

Figure : Some friction will exist in the bearings on this train car. Public Domain image by ds_30.

A plain bearing consists of a circular shaft fitted into a slightly larger circular hole as shown below. The shaft will usually be
rotating and will be exerting some sort of load  onto the bearing. The bearing will then be supporting the shaft with some
normal force, and a friction force will exist between the bearing surface and the surface of the shaft. Sometimes the rotation of the
bearing will cause the shaft to climb up the side of the side of the bearing, causing the angle of the normal and friction forces to
change, but this climbing is usually small enough that it is neglected.

Figure : In a plain bearing like the one shown here, a friction force will oppose the rotation of the spinning shaft in the
stationary bearing. This force will cause a small moment opposing the rotation of the shaft.

If we assume that the climbing in the bearing is negligible, the normal of the bearing on the shaft will be equal and opposite to
loading force of the shaft on the bearing. Furthermore, if the shaft is rotating relative to the bearing, then the friction force will be
equal to kinetic coefficient of friction times the normal force of the bearing on the shaft.

If the climb angle is assumed to be small, then...

The friction force will then be exerting a moment about the center of the shaft that opposes the rotation of the shaft. Unless some
other moment is keeping the shaft spinning, this moment will eventually slow down and stop the rotation in the shaft. The
magnitude of this moment will be equal to the magnitude of the friction force times the radius of the shaft.

Another important factor to keep in mind is that most bearings are lubricated. This can significantly lower the coefficients of
friction (this is actually the main reason for using lubrication in machinery). When performing calculations, it is important to know
if the bearing is lubricated and, if so, to use the appropriate friction coefficients.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/v8q6xnJN9zE.

A cart and its load weigh a total of 200 lbs. There are two wheels on the cart, each with a diameter of 2 feet and each
supporting half of the 200-lb load. The bearing attaching each wheel to the cart is a lubricated steel-on-steel (kinetic coefficient
of friction = 0.05) journal bearing, with a shaft one inch in diameter. What is the moment due to friction from each bearing?
Assuming there are no other sources of friction, what magnitude must the pulling force have in order to keep the cart moving at
a constant speed?

Figure : problem diagram for Example ; a two-wheeled cart assembled with bearings is pulled by some force to the
right.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/1R3BZIBQsXE.

This page titled 6.5: Bearing Friction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
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6.6: Disc Friction
Disc friction is the friction that exists between a stationary surface and the end of a rotating shaft, or other rotating body. Disc
friction will tend to exert a moment on the bodies involved, resisting the relative rotation of the bodies. Disc friction is applicable to
a wide variety of designs including end bearings, collar bearings, disc brakes, and clutches.

Figure : This orbital sander rotates a circular sanding disc against a stationary surface. The disc friction between the sanding
disc and the surface will exert a moment on both the surface and the sander. Image by Hedwig Storch CC-BY-SA 3.0.

Hollow Circular Contact Area 

To start our analysis of disc friction we will use the example of a collar bearing. In this type of bearing, we have a rotating shaft
traveling through a hole in a surface. The shaft is supporting some load force as shown, and a collar is used to support the shaft
itself. In this case we will have a hollow circular contact area between the rotating collar and the stationary surface.

Figure : In a collar bearing we will have a hollow circular contact area between the rotating collar and the stationary surface.

The friction force at any point in the contact area will be equal to the normal force at that point times the kinetic coefficient of
friction at that point. If we assume a uniform pressure between the collar and the surface and a uniform coefficient of friction, then
we will have the same friction force exerted at all points. However, this does not translate into an equal moment exerted by each
point. Points further from the center of rotation will exert a larger moment than points closer to the center of rotation because they
will have a larger moment arm.
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Figure : Though the friction forces at any point will be the same, points along the outside surface of the contact area will exert
a larger moment than points along the inside surface of the contact area.

To determine the net moment exerted by the friction forces, we will need to use calculus to sum up the individual moments over the
entire contact area. The moment at each individual point will be equal to the kinetic coefficient of friction, times the normal force
pressure at that point , times the distance from that point to the center of rotation .

To simplify things, we can move the constant coefficient of friction and the constant normal force pressure term outside the
integral. We can also replace the pressure term with the load force on the bearing over the contact area. Finally, so that we can
integrate over the range of  values, we can recognize that the rate of change in the area  for the hollow circular areas is
simply the rate of change of the  term  times the circumference of the circle at . These changes lead to the equation below.

Finally, we can evaluate the integral from the inner radius to the outer radius. If we evaluate the integral and simplify, we will end
up with the final equation below.

Solid Circular Contact Area 
In cases where we have a solid circular contact area, such as a solid circular shaft in an end bearing or the orbital sander shown at
the top of the page, we simply set the inner radius to zero and we can simplify the formula. If we do so, the original formula is
reduced to the equation below.

Figure : An end bearing has a solid circular contact area between the rotating shaft and the stationary bearing.
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Circular Arcs (Disc Brakes) 

In some cases, such as in disc brakes, we may have a contact area that looks like a section of the hollow circular contact area we
had earlier. For this scenario we have less area on which the friction force can be exerted to cause a moment, but the smaller area
also causes higher pressures in that contact area for the same load force. The end result is that these terms cancel each other out and
we end up with the same formula we had for the hollow circular contact area when examining a single brake pad. Most disc brakes,
however, have a pair of pads, one on each side of the rotating disc, so we will need to double the moment in our equation for the
usual pair of pads.

Figure : The contact area in disc brakes is often approximated as a circular arc with a given contact angle  (theta).

The calculations above show that the contact angle  is irrelevant to the stopping power of the brakes in theory. In practice,
however, larger brake pads can slightly increase the stopping power of the brakes and provide other benefits such as better heat
dissipation.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/jEtTe2cyumc.

A disc sander is pressed against a wooden surface with a force of 50 N. Assuming the kinetic coefficient between the sanding
pad and the wood is 0.6 and the diameter of the sanding disc is 0.2 meters, what is the torque the motor must exert to keep the
disc spinning at a constant rate?

6.6.5 θ
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Figure : problem diagram for Example . Orbital sander being used to sand wood. Image by Hedwig Storch CC-BY-
SA 3.0.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/0cBfIfDYDic.

In the disc brake setup shown below, a pair of brake pads is pressed into the rotor with a force of 300 lbs. If the kinetic
coefficient of friction between the brake pads and the rotor is 0.4, find the stopping torque exerted by the brake pads.

Figure : problem diagram for Example . Image of a disc brake and diagram of its contact area.

Solution

6.6.6 6.6.1
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/lYrN0zr6kF8.

This page titled 6.6: Disc Friction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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6.7: Belt Friction
In any system where a belt or a cable is wrapped around a pulley or some other cylindrical surface, we have the potential for
friction between the belt or cable and the surface it is in contact with. In some cases, such as a rope over a tree branch being used to
lift an object, the friction forces represent a loss. In other cases such as a belt-driven system, these friction forces are put to use
transferring power from one pulley to another pulley.

Figure : In many belt-driven systems, the belt friction keeps the pulley from slipping relative to the belt. This allows us to use
belts to transfer forces from one pulley to another pulley. Image by Kiilahihnakone, CC-BY-SA 3.0.

Figure : If we were to pass a rope over a tree branch to help lift an object such as this bear bag, the rope would experience belt
friction resisting the sliding of the rope relative to the surface of the tree branch. Image by Virginia State Park Staff, CC-BY 2.0.

For analysis, we will start a flat, massless belt passing over a cylindrical surface. If we have an equal tension in each belt, the belt
will experience a non-uniform normal force from the cylinder that is supporting it.

In a frictionless scenario, if we were to increase the tension on one side of the rope it would begin to slide across the cylinder. If
friction exists between the rope and the surface though, the friction force will oppose with sliding motion, and prevent it up to a
point.

Figure : With equal tensions on each side of the belt, only a non-uniform normal force exists between the belt and the surface.
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Figure : With unequal tensions, a friction force will also be present opposing the relative sliding of the belt to the surface.

Friction in Flat Belts 

A flat belt is any system where the pulley or surface only interacts with the bottom surface of the belt or cable. If the belt or cable
instead fits into a groove, then it is considered a V belt.

Figure : For a flat belt, the belt or cable will interact with the bottom surface. For a V belt, the belt or cable will interact with
the sides of a groove.

When analyzing systems with belts, we are usually interested in the range of values for the tension forces where the belt will not
slip relative to the surface. Starting with the smaller tension force on one side , we can increase the second tension force 
to some maximum value before slipping. For a flat belt, the maximum value for  will depend on the value of , the static
coefficient of friction between the belt and the surface, and the contact angle between the belt and the surface  given in radians,
as described in the equation below.

Figure : The method for determining the maximum value of  before the belt starts slipping.

Friction in V Belts 
A V belt is any belt that fits into a groove on a pulley or surface. For the V belt to be effective, the belt or cable will need to be in
contact with the sides of the groove, but not the base of the groove as shown in the diagram below. With the normal forces on each

6.7.4

6.7.5
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side, the vertical components must add up the the same as what the flat belt would have, but the added horizontal components of
the normal forces, which cancel each other out, increase the potential for friction forces.

The equation for the maximum difference in tensions in V belt systems is similar to the equation in flat belt systems, except we use
an "enhanced" coefficient of friction that takes into account the increased normal and friction forces possible because of the groove.

Figure : In a V belt, the "enhanced" coefficient of friction takes into account the coefficient of friction between the two
materials as well as the groove angle.

As we can see from the equation above, steeper sides to the groove (which would result in a smaller angle ) result in an increased
potential difference in the tension forces. The tradeoff with steeper sides, however, is that the belt becomes wedged in the groove
and will require force to unwedge itself from the groove as it leaves the pulley. This will cause losses that decrease the efficiency of
the belt driven system. If very high tension differences are required, chain-driven systems offer an alternative that is usually more
efficient.

Torque and Power Transmission in Belt-Driven Systems 
In belt-driven systems there is usually an input pulley and one or more output pulleys. To determine the maximum torque or power
that can be transmitted by the belt, we will need to consider each of the pulleys independently, understanding that slipping
occurring at either the input or the output will result in a failure of the power transmission.

Figure : A belt-driven system with a single input and a single output.

The first step in determining the maximum torque or power that can be transmitted in the belt drive is to determine the maximum
possible value for  before slipping occurs at either the input or output pulley (again, slipping at either location cannot occur). To
start we will often be given the "resting tension". This is the tension in the belt when everything is stationary and before power is
transferred. Sometimes machines will have adjustments to increase or decrease the resting tension by slightly increasing or
decreasing the distance between the pulleys. If we turn on the machine and increase the load torque at the output, the tension on
one side of the pulleys will remain constant as the resting tension while the tension on the other side will increase. Since the resting
tension is constant and is always the lower of the two tensions, it will be the  tension in equations  and .

Though it is often wise to check, assuming the pulleys are made of the same material (and therefore have the same coefficients of
friction), it is often assumed that the belt will first slip at the smaller of the two pulleys in a single-input-single-output belt system.
This is because the smaller pulley will have the smaller contact angle , while all other values remain the same.

=   ,  whereT2max
T1 e βμs (enh) (6.7.2)
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Once we have the maximum value for , we can use that to find the torque at the input pulley and the torque at the output pulley.
Note that these two values will not be the same unless the pulleys are the same size. To find the torque, we will simply need to find
the net moment exerted by the two tension forces, where the radius of the pulley is the moment arm.

Maximum input torque before slipping:

Maximum output torque before slipping:

To find the maximum power we can transfer with the belt drive system, we will use the rotational definition of power, where the
power is equal to the torque times the angular velocity in radians per second. Unlike the torque, the power at the input and the
output will be the same, assuming no inefficiencies.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/nVYc7sBk9UQ.

A steel cable supporting a 60-kg mass is run a quarter of the way around a steel cylinder and supported by a pulling force as
shown in the diagram below. The static coefficient of friction between the cable and the steel cylinder is 0.3.

What is the minimum pulling force required to lift the mass?
What is the minimum pulling force required to keep the mass from falling?

Figure : problem diagram for Example . Belt passing over a flat pulley supports a mass at one end and is supported
by a pulling force at the other.

Solution

T2

= ( − )( )Mmax T2max T1 rinput (6.7.4)

= ( − )( )Mmax T2max T1 routput (6.7.5)

= ( )( ) = ( )( )Pmax Minput max ωinput Moutput max ωoutput (6.7.6)
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/SXtKkoF4xtc.

A V-belt pulley as shown below is used to transmit a torque. If the diameter of the pulley below is 5 inches, the resting tension
in the belt is 20 lbs, and the coefficient of friction between the belt material and the pulley is 0.4, what is the maximum torque
the pulley can exert before slipping?

Figure : problem diagram for Example . A V-belt pulley of given dimensions is used to transmit a torque.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/RLZxKEJVLeo.

A flat belt is being used to transfer power from a motor to an alternator as shown in the diagram below. The coefficient of
friction between the belt material and the pulley is 0.5. If we require a power of 100 Watts (Nm/s) while the input is rotating at
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a rate of 1000 rpm and the output is rotating at a rate of 1428.6 rpm, what is the required resting tension in the belt? (Assume
contact angles of approximately 180 degrees)

Figure : problem diagram for Example . Belt-driven system of with a single input, single output, and flat belt.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/K7PhVhXgqUQ.

This page titled 6.7: Belt Friction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

6.7.11 6.7.3

Belt Friction Adaptive Map Worked EBelt Friction Adaptive Map Worked E……

6.7.4 6.7.3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/53833?pdf
https://youtu.be/K7PhVhXgqUQ
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/06%3A_Friction_and_Friction_Applications/6.07%3A_Belt_Friction
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=K7PhVhXgqUQ
https://www.youtube.com/watch?v=K7PhVhXgqUQ


6.8.1 https://eng.libretexts.org/@go/page/53849

6.8: Chapter 6 Homework Problems

A boy is pulling a sled full of snowballs weighing 30 lbs across a snowy flat surface (  = 0.1). Find the force 
needed to keep the sled moving at a constant speed.

Figure : problem diagram for Exercise . A sled is pulled across a flat surface with a force applied at an angle.

Solution

 lbs

A wooden box sits on a concrete slope (  = 0.55). How much force would be needed to start pulling this box up
the ramp? If we let go of the box, would it slide down the ramp?

Figure : problem diagram for Exercise . A box is pulled up on a 25° incline by a force applied parallel to the ramp.

Solution

 N

Box will not slip if released.

A wheelbarrow with a weight of 60 lbs and the dimensions shown below sits on a ten-degree incline. Assume friction exists at
the rear support (A) but no friction exists at the wheel (B). What is the minimum coefficient of friction needed between the
support and the ground to keep the wheelbarrow from sliding down the hill?

Exercise 6.8.1

= 0.3,μs μk F

6.8.1 6.8.1

= 3.28Fpull

Exercise 6.8.2

= 0.62,μs μk

6.8.2 6.8.2

= 578.9Fpull
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Figure : problem diagram for Exercise . A 60-lb wheelbarrow faces uphill on a 10° incline and experiences friction
between the ground and its rear support.

Solution

The car below weighs a total of 1500 lbs, has a center of mass at the location shown, and is rear-wheel drive (only the rear
wheels will create a friction force). Assuming that the tires are rubber and the surface is concrete  = 0.9), what is the
maximum angle of the hill  that the car will be able to climb at a constant rate before the wheels start to slip? What is the
maximum angle if the car is front-wheel drive?

Figure : problem diagram for Exercise . A 1500-lb car climbs uphill at a constant rate on an incline of angle .

Solution

° for rear-wheel drive

° for front-wheel drive

The fridge shown below has a total weight of 120 lbs and a center of mass as shown below. The fridge is pushed as shown until
it either starts to slide or tips over. What is the minimum coefficient of friction needed for the fridge to tip before it starts
sliding?

6.8.3 6.8.3

= 0.418μs
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(μs
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Figure : problem diagram for Exercise . A 120-lb fridge on a level surface experiences a pushing force towards the
right.

Solution

 at a minimum

You have a bookcase with the dimensions and weight shown below. You are examining the safety of your design.

If a toddler were to pull on the bookcase as shown, what is the pulling force that would tip it over? (assume the center of
gravity is the center of the bookcase and there is no slipping)
What would the static coefficient of friction need to be to have the case slide before it tips over?

Figure : problem diagram for Exercise . A 120-lb bookcase on a level surface experiences a downwards pulling
force applied at an angle on its left side.

Solution

 lbs

 at a maximum

The wedge shown below is pressed by a log splitter into a log with a force of 200 lbs. Assuming the coefficient of friction
(both static and kinetic) between the steel wedge and the wood of the log is 0.3, what is the magnitude of the normal force
exerted on either side of the log?

6.8.5 6.8.5

= 0.75μs

Exercise 6.8.6

6.8.6 6.8.6

= 34.64Fpull

= 0.218μs
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Figure : problem diagram for Exercise . A wedge with a point angle of 8° is pressed point-down into a log.

Solution

 lbs

The power screw in the screw jack shown below has an outside diameter of one and a half inches and a total of three threads
per inch. Assume the coefficients of friction are both 0.16.

What is the moment required to create a two-ton (4000 lb) lifting force?
Is this power screw setup self-locking?

Figure : problem diagram for Exercise . A screw jack experiences a downwards force of 4000 lbs from the load
placed on it.

Solution

 ft-lbs

Screw is self-locking.

The end bearing as shown below is used to support a rotating shaft with a load of 300 N on it. If the shaft and the bearing
surface are both lubricated steel (assume the coefficients of friction are both 0.06), what is the moment exerted by the friction
forces for…

A solid shaft with a diameter of 2 cm?
A hollow shaft with an outside diameter of 2 cm and an inside diameter of 1.5 cm?

6.8.7 6.8.7

= = 271.0FN1 FN2

Exercise 6.8.8

6.8.8 6.8.8

= 58.3Mlift
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Figure : problem diagram for Exercise . An end bearing supports a rotating shaft that experiences a 300 N load.

Solution

 N-m (solid shaft)

 N-m (hollow shaft)

A 120-lb person is being lifted by a rope thrown over a tree branch as shown below. If the static coefficient of friction between
the rope and the tree branch is 0.61, what is the pulling force required to start lifting the person? What is the pulling force
required to keep them from falling?

Figure : problem diagram for Exercise . A rope thrown over a branch is pulled downwards at an angle at one end,
to lift and hold a 120-lb person on the other end.

Solution

 lbs

 lbs

This page titled 6.8: Chapter 6 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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7.0: Video Introduction to Chapter 7

Video introduction to the topics covered in this chapter, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/d2TXkfGc-yI.

This page titled 7.0: Video Introduction to Chapter 7 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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7.1: One-Dimensional Continuous Motion
Imagine we have a particle that is moving along a single axis. At any given point in time, this particle will have a position, which
we can quantify with a single number which we will call . This value will measure the distance from some set origin point to the
position of the particle. If the particle is moving over time, we will need a function to describe the position over time . This is
an equation where if we plug a value for , it will give us the position at that time.

Figure : The position of a particle in one dimension can be described with a single number. If the position is changing over
time, we will use the function  to describe the position at any given point in time.

The velocity of the particle is then the rate of change of the position over time. If the particle is not moving, then position is not
changing over time and the velocity is zero. If the particle is moving, we will first need to find the equation for position , and
then take the derivative of the position equation to find the velocity equation . Velocity differs from speed in that the velocity
has a direction (either positive or negative for now) while the speed is simply the magnitude of the velocity (always a positive
number).

Next up is the acceleration, which is the rate of change of the velocity over time. If the velocity is not changing, the acceleration
will be zero. If the velocity does change over time, then we will need to take the derivative of the velocity equation  to find the
acceleration equation . The acceleration is then also the double derivative of the position equation over time. Like the velocity,
the acceleration has both a magnitude and a direction.

To simplify the notation, we often use a dot on top of the variable to indicate a time derivative. This makes the velocity (the
derivative of )  and the acceleration (the derivative of the derivative of ) . These relationships and their shorthand notations
are all shown below.

If we instead start with the equation for acceleration, we can take the integral of that equation  to find the equation for velocity,
. But unlike the derivatives, we will have an extra step in this process because whenever we integrate we wind up with a

constant of integration (which we will usually call ). When we integrate the acceleration equation to find the velocity equation,
this constant will be the initial velocity (the velocity at time = 0).

Next we can take the integral of the velocity equation  to find the position equation . With this integration we will again
wind up with a constant of integration, which in this case will be the initial position (the position at time = 0). These relationships
are shown below.

Constant Acceleration Systems: 

In cases where we have a constant acceleration (often due to a constant force), we can start with a constant value for , and
work out the integrals from there. Along the way we will add the initial velocity and the initial position as the constants of
integration to wind up with the formulas below.

x

x(t)

t
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x(t)

v(t)
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x ẋ x ẍ

Position:

Velocity:
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v(t) = =
dx

dt
ẋ
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dt2
ẍ
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Acceleration:

Velocity:

Position:

a(t)

v(t) = ∫ a(t)
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If we take the equations for the position and the velocity from above, then solve both of them for  and set those equations equal to
one another, we can actually wind up with another equation that directly relates position, velocity, and acceleration without needing
to know the time.

It is important to remember that these equations are only valid when the acceleration is constant. When that is not the case, you will
need to use calculus to find the derivatives or integrals based on the equations for position, velocity, and acceleration that you do
know.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/uemxYyLN3-U.

You are in a van that steadily accelerates from 20 m/s to 35 m/s over the course of 10 seconds. What is your rate of
acceleration?

Figure : A black van accelerating at a constant rate.

Solution

Acceleration:

Velocity:

Position:

a(t) = a

v(t) = at+v0

x(t) = a + t+
1

2
t

2
v0 x0

(7.1.7)

(7.1.8)

(7.1.9)

t

− = 2a(x− )v
2

v2
0 x0 (7.1.10)
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/19qGXfNkWcQ.

You are in a van that steadily accelerates from 20 m/s to 35 m/s over the course of 10 seconds. How many meters did you
travel in those ten seconds?

Figure : A black van accelerating at a constant rate.

Solution
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Video : Worked solution to Example , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/hjyUHnw8FSI.

In a rocket sled deceleration experiment, a manned sled is decelerated from a speed of 200 mph (89.4 m/s) to a stop at a
constant rate of 18 G's (176.6 m/s ). How long does it take for the sled to stop? How far does the sled travel while
decelerating?

Figure : A rocket sled decelerating at a constant rate.

Solution
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Video : Worked solution to Example , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/bXzcdpaxB_c.

A metallic particle is accelerated in a magnetic field such that its velocity over time is defined by the function 
, where time is in seconds and velocity is in meters per second. If we assume that the particle has an initial

position of zero , what are the equations that describe the acceleration and position over time?

Figure : A particle accelerator.

Solution

WP7.1.3-MRCWP7.1.3-MRC
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Video : Worked solution to Example , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/AWhLmMhKygg.

This page titled 7.1: One-Dimensional Continuous Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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7.2: One-Dimensional Noncontinuous Motion
In continuous motion, we used a single mathematical function each to describe the position, velocity, or acceleration over time. If
we cannot describe the motion with a single mathematical function over the entire time period, that motion is considered
noncontinuous motion. In cases such as this, we will use different equations for different sections of the overall time period.

For an example of noncontinuous motion, imagine a car that accelerates for a few seconds, then holds a steady speed for a few
seconds, then puts on the brakes and comes to a stop over the final few seconds. There is no one mathematical function we can use
to describe the motion for the full time period, but if we break the motion into three pieces, then we can come up with an equation
for each section of the motion.

Figure : As this car accelerates, its velocity steadily goes up for a few seconds, then it holds constant for a few seconds, then it
steadily goes down for a few seconds. Since we would need a separate equation for each section of this motion, this is considered
noncontinuous motion.

Analyzing the first time period will be exactly the same as analyzing a continuous function. We will initially need to identify the
mathematical function to describe position, or velocity, or acceleration for that first time period. Next we take derivatives to move
from position to velocity to acceleration or take integrals to move from acceleration to velocity to position. Whenever we take an
integral, we need to remember to include the constant of integration which will represent the initial velocity or the initial position
(in the velocity and position equations, respectively).

For the second, third, and any other following sections, we will do much the same process. We will start by identifying an equation
for the position, or velocity, or acceleration for that time period. From there we again take derivatives or integrals as appropriate,
but now the constants of integration will be a little more complicated. Those constants still represent initial velocities and and
positions in a sense, but they will be the velocity and position when , not the velocity and position at the start of that section.

To find the constants of integration, we are instead going to have to use the transition point, which is the point in time where we are
moving from one set of equations to the next. Even though the equations are changing, we cannot have an instantaneous jump in
either the position or velocity. An instantaneous jump in either position or velocity would require infinite acceleration, which is
physically impossible.

7.2.1

t = 0
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Figure . Though there are noticeable jumps in the acceleration moving from one section to the next, there are no jumps in the
velocity or position as we move from one section to the next. This is because jumps in those plots would require infinite
accelerations.

To find the velocity equations for the second time frame (or third, fourth, etc.), we start by integrating the acceleration equation for
that same time period. This will lead to an equation with an unknown constant of integration. To solve for that constant, we look
back to the velocity equation for the previous time frame and solve for the velocity at the very end of this prior time period. Since it
can't jump instantaneously, this is also the velocity at the start of the current time period. Using this velocity, along with the time 
at the transition point, we can solve for the last unknown in the current velocity equation (the constant of integration).

To find the position equation for the second time frame (or third, fourth, etc.), we start by integrating the velocity equation for the
same time period (you will need to solve for the unknowns in the velocity equation first, as discussed above). After integration, we
should have one new constant of integration in the position equation. Just as we did with the velocity equations, we will use the
position equation from the prior time frame to solve for the position at the transition point, then use that value along with the
known time  to solve for the unknown constant in the current position equation.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/yNBenQRalhU.

A car accelerates from rest at a rate of 10 m/s  for 10 seconds. The car then immediately begins decelerating at a rate of 4 m/s
for another 25 seconds before coming to a stop. Find the equations for the acceleration, velocity, and position functions over
the full 35-second time period, and plot these functions.
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Figure : A red racecar moving along a track.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/tPBlDQsiX_c.

A plane with an initial speed of 95 m/s touches down on a runway. For the first second the plane rolls without decelerating. For
the next 5 seconds reverse thrust is applied, decelerating the plane at a rate of 4 m/s . Finally, the brakes are applied with
reverse thrust increasing the rate of deceleration to 8 m/s . How long does it take for the plane to come to a complete stop?
How far does the plane travel before coming to a complete stop?

7.2.3
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Figure : A plane is moving down an airport runway.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/Of-ipYWblrQ.

A satellite's motion is described by the velocity function shown below over a sixty-second time period. For that same time
period, determine the satellite's acceleration and position functions and draw these functions on a plot.

Figure : problem diagram for Example . Graph of a satellite's velocity in m/s for a period of 60 seconds, with the
functions describing the velocity given.

7.2.4
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Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/ngI6_I8VFPs.

This page titled 7.2: One-Dimensional Noncontinuous Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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7.3: Two-Dimensional Kinematics with Rectangular Coordinates
Two-dimensional motion (also called planar motion) is any motion in which the objects being analyzed stay in a single plane.
When analyzing such motion, we must first decide the type of coordinate system we wish to use. The most common options in
engineering are rectangular coordinate systems, normal-tangential coordinate systems, and polar coordinate systems. Any planar
motion can potentially be described with any of the three systems, though each choice has potential advantages and disadvantages.

The rectangular coordinate system (also sometimes called the Cartesian coordinate system) is the most intuitive approach to
describing motion. In rectangular coordinate systems we have an -axis and a -axis. These axes remain fixed to some origin point
in the environment and they do not change over time. Instead, the bodies we are analyzing usually move relative to these fixed
axes. An example of a body with a rectangular coordinate systems is shown in the figure below.

Figure : In the rectangular coordinate system we have a fixed origin point at , the particle at point , and the  and 
directions, which must be perpendicular to one another. The vector  is the vector going from  to . The component of this vector
in the  direction is  and the component of this vector in the  direction is . We usually describe position in terms of  and  at
any given point in time. The vectors  and  represent unit vectors (vectors with a length of one) in the  and  directions
respectively.

Rectangular coordinates work best for systems where all forces maintain a constant direction. The most common example of this
is projectile motion, where gravity (the only force in these systems) maintains a constant downward direction. An example of a
system where the forces change direction over time would be something like a car going around a curve in the road. In this case,
the friction force at the tires is going to be rotating with the car. The car problem will therefore be better suited to the use of
normal-tangential or polar coordinate systems.

When describing the position of a point in rectangular coordinate systems, we are going to start by describing both  and 
coordinates in a vector form. For this, the values  and  represent distances and the unit vectors  and  are used to indicate which
distance corresponds with which direction. This may seem redundant, but remember when solving actual problems,  and  will
just be numbers.

Just like with one-dimensional problems, if we take the derivative of the position equation, we will find the velocity equation. If we
take the derivative of the velocity equation we will wind up with the acceleration equation. Also like one-dimensional problems,
we can use integration to move in the other direction, moving from an acceleration equation to a velocity equation to a position
equation.

The unit vectors add a new element in two dimensions, but since the unit vectors don't change over time (they are constants), we
treat them like we would any other constant for derivatives and integrals. The resulting velocity and acceleration equations are as
follows.

x y
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x x y y x y

î ĵ x y

x y
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x y

Position: (t) = x(t)  +y(t) rp/o î ĵ (7.3.1)

Velocity:

Acceleration:

v(t) = (t)  + (t) ẋ î ẏ ĵ
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The above equations are vector equations with velocities and accelerations broken down into  and  components. Since the  and 
 directions are perpendicular, they are also independent (movement in the  direction doesn't impact movement in the  direction,

and vice versa). This essentially means we can split our vector equation into a set of two scalar equations. To do this we just put
everything in front of the  unit vectors in the  equations and everything in front of the  unit vectors in the  equations.

Once we have everything split into - and -direction equations, we can just use the same processes we used for one dimensional
motion to move from  to  to , and from  to  to . The variable linking the two equations is time .

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/qKqUNuSPWT4.

A motorcycle drives off a one-meter-tall ramp at an angle of 30 degrees as shown below. Determine the equations for the
acceleration, velocity, and position over time. How far does the motorcycle travel in the  direction before hitting the ground?

Figure : problem diagram for Example . A motorcycle drives off the edge of a ramp with an initial velocity of 22
m/s at 30° above the -axis.

Solution

x y x

y x y

î x ĵ y

Position:

Velocity:

Acceleration:

x(t) = … y(t) = …

(t) = … (t) = …ẋ ẏ

(t) = … (t) = …ẍ ÿ

(7.3.4)

(7.3.5)

(7.3.6)
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/ujM4LIQlG1Q.

A basketball is thrown towards a hoop that is three feet higher in the  direction and 25 feet away in the  direction. If the ball
is thrown at an initial angle of 50 degrees, what must the initial velocity be for the ball to make it into the hoop?

Figure : problem diagram for Example . A ball is thrown at some initial velocity, at an angle of 50° above the
horizontal.

Solution
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/IGBB1YXRNr0.

This page titled 7.3: Two-Dimensional Kinematics with Rectangular Coordinates is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.
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7.4: Two-Dimensional Kinematics with Normal-Tangential Coordinates
Two-dimensional motion (also called planar motion) is any motion in which the objects being analyzed stay in a single plane.
When analyzing such motion, we must first decide the type of coordinate system we wish to use. The most common options in
engineering are rectangular coordinate systems, normal-tangential coordinate systems, and polar coordinate systems. Any planar
motion can potentially be described with any of the three systems, though each choice has potential advantages and disadvantages.

The normal-tangential coordinate system centers on the body in motion. The origin point will be the body itself, meaning that
the position of the particle in the normal-tangential coordinate system is always "zero". The tangential direction ( -direction) is
defined as the direction of travel at that moment in time (the direction of the current velocity vector), with the normal direction ( -
direction) being 90 degrees counterclockwise from the -direction. The diagram below shows a particle following a curved path
with the current normal and tangential directions.

Figure : In the normal-tangential coordinate system, the particle itself serves as the origin point. The -direction is the current
direction of travel and the -direction is always 90° counterclockwise from the -direction. The  and  vectors represent unit
vectors in the  and  directions respectively.

Normal-tangential coordinate systems work best when we are observing motion from the perspective of the body in motion, such as
being a passenger in a car or plane. In such cases, we would define ourself as the origin point and "forward" would be the
tangential direction. An important distinction between the rectangular coordinate system and the normal-tangential coordinate
system is that the axes are not fixed in the normal-tangential coordinate system. If we go back to the car example, the "forward" or
tangential direction will turn with the car, but the "east" direction or the -direction will remain constant no matter which way the
car is pointed.

The way the coordinate system is defined, the position of the particle is always set to be at the origin point. The velocity is also
always set to be in the tangential direction, and thus there is no velocity in the -direction. The variable  is the body's current
speed.

To find the acceleration, we need to take the derivative of the velocity function. This may seem simple, but there is a new thing to
consider in that the  unit vector is not constant. This means a change in speed can cause an acceleration, and a change in
direction (which would change the  direction) can also cause an acceleration. Going back to our car example, this makes some
intuitive sense. We can feel accelerations, and we would be able to feel acceleration if we suddenly stepped on the gas and
increased our speed, but we would also be able to feel the acceleration if we took a tight turn at a constant speed.

Going back to the derivative, we will use the product rule, taking the derivative of one piece at a time.

 is the rate of change of speed of the body, which is called the tangential acceleration. Going back to our car analogy, this is the
acceleration we would experience from pressing the gas or brake pedals.

The other piece of our derivative is the speed times the derivative of a unit vector, which we will need to analyze further. When
thinking about the derivative of a rotating unit vector, we think about rotating the coordinate system by a small amount .
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Figure : The derivative of a rotating unit vector can be thought of as the change in position of the head of that vector as it
rotates about a small angle .

The derivative of the  vector is then the change in position of the head of the vector. Using some geometry, we can see that the
distance the head of the vector moves is the length of the vector (which is always 1 for a unit vector) times the angle of rotation in
radians. The direction the head of the  vector travels is roughly the  direction. In fact, as  approaches zero, it becomes
exactly the  direction. Putting this back into our derivative, we wind up with the following equation for acceleration.

Before we arrive at our final set of equations, we have one last potential substitution. If a particle is moving along a curved path,
the rate at which it is turning  will be equal to the velocity of the particle divided by the radius of the path at that point (
divided by rho, ). Putting this last substitution in, we have our final set of equations with two equivalent options for calculating
the accelerations.

When using these equations, it is important to remember that they are acceleration equations. If we want to know the overall
acceleration we would need to add the two acceleration components as vectors. Also, if we are given an acceleration that is not in
the normal or tangential direction, we will first need to break that acceleration vector down into normal and tangential components
before using the above equations. Finally, if we want the velocity or acceleration in directions other than the normal and tangential
directions, we will need to use a coordinate transformation.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/TIjJLcmtaq8.

A commercial jetliner is traveling at a constant 250 m/s when it executes an emergency 180-degree turn. If the turn takes 20
seconds, what is the acceleration experienced by the passengers? What is the radius of the curve taken by the plane?
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Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/1cQ-LQC8Ahg.

Assuming a cloverleaf interchange has a radius of curvature of 80 meters at the tightest part of the turn, what is the fastest a car
could travel around this curve without experiencing more than half a  in acceleration? Assume the car is traveling at a
constant speed. If the car was instead increasing speed at a rate of 2 m/s , what would be the new overall magnitude of the
acceleration experienced by the passengers?

Figure : A cloverleaf interchange on a highway.
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/_Df_HZU0yHk.

This page titled 7.4: Two-Dimensional Kinematics with Normal-Tangential Coordinates is shared under a CC BY-SA 4.0 license and was
authored, remixed, and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards
of the LibreTexts platform; a detailed edit history is available upon request.
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7.5: Two-Dimensional Motion with Polar Coordinates
Two-dimensional motion (also called planar motion) is any motion in which the objects being analyzed stay in a single plane.
When analyzing such motion, we must first decide the type of coordinate system we wish to use. The most common options in
engineering are rectangular coordinate systems, normal-tangential coordinate systems, and polar coordinate systems. Any planar
motion can potentially be described with any of the three systems, though each choice has potential advantages and disadvantages.

The polar coordinate system uses a distance  and an angle  to locate a particle in space. The origin point will be a fixed
point in space, but the -axis of the coordinate system will rotate so that it is always pointed towards the body in the system. The
variable  is also used to indicate the distance from the origin point to the particle. The theta-axis will then be 90 degrees
counterclockwise from the -axis with the variable  being used to show the angle between the -axis and some fixed axis that does
not rotate. The diagram below shows a particle with a polar coordinate system.

Figure : In the polar coordinate system, the  direction always points from the origin point to the body. The variable  is also
used to indicate the distance between the two points. The theta direction will always be 90° counterclockwise from the  direction.
Theta is also used to indicate the angle between the  direction and some fixed axis used for reference. The  and  vectors
represent unit vectors in the  and  directions, respectively.

Polar coordinate systems work best in systems where a body is being tracked via a distance and an angle, such as a radar system
tracking a plane. In cases such as this, the raw data from this in the form of an angle and a distance would be direct measures of 
and  respectively. Polar coordinate systems will also serve as the base for extended body motion, where motors and actuators can
directly control things like  and .

The way the coordinate system is defined, the -axis will always point from the origin point to the body. The distance from the
origin to the point is defined as  with no component of the position being in the  direction.

To find the velocity, we need to take the derivative of the position function over time. Since the distance  can change over time as
well as the direction  changing over time to track the body, we need to worry about the derivative of  as well as the derivative of
the unit vector. Like we did with the normal-tangential systems, we will use the product rule and then substitute in a value for the
derivative of the unit vector.

To find the acceleration, we need to take the derivative of the velocity function. As all of these terms, including the unit vectors,
change over time, we will need to use the product rule extensively. The  term will split into two terms, and the  term will split
into three terms.

Again we will need to substitute in values for the derivatives of the unit vectors similar to before, but it is worth mentioning that the
derivative of the  vector as it rotates counterclockwise is in the negative  direction.
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ûθ ûr

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/53926?pdf
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/07%3A_Particle_Kinematics/7.05%3A_Two-Dimensional_Motion_with_Polar_Coordinates


7.5.2 https://eng.libretexts.org/@go/page/53926

Figure : The derivatives of the  and  unit vectors. Notice that the derivative of the  vector is in the negative 
direction.

After substituting in the derivatives of the unit vectors and simplifying the function, we arrive at our final equation for the
acceleration.

Though this final equation has a number of terms, it is still just two components in vector form. Just as with the normal-tangential
coordinate system, we will need to remember that we will need to split the single vector equation into two separate scalar
equations. In this case we will have the equation for the terms in the  direction and the equation for the terms in the  direction.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/F4i0Kz660aE.

A radar tracking station gives the following raw data to a user at a given point in time. Based on this data, what is the current
velocity and acceleration in the  and  directions? What is the current velocity and acceleration in the  and  directions?

Figure : Problem diagram for Example . The instantaneous polar-coordinate position values of an airplane are given
as tracked by a radar station, as well as the first and second derivatives of these quantities.
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Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/HP4WiIa3Nc0.

A spotlight is tracking an actor as he moves across the stage. If the actor is moving with a constant velocity as shown below,
what values do we need for the spotlight angular velocity  and spotlight angular acceleration  so that the spotlight
remains fixed on the actor?

Figure : problem diagram for Example . A spotlight rotates to follow an actor moving across stage at a known
velocity and starting from a known position in relation to the spotlight.

Solution
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/jyD1seNQI14.

This page titled 7.5: Two-Dimensional Motion with Polar Coordinates is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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7.6: Dependent Motion Systems
Dependent motion analysis is used when two or more particles have motions that are in some way connected to one another. The
way in which the motion of these particles is connected is known as the constraint. A simple example of a constrained system is
shown in the figure below. Imagine that someone's pickup truck gets stuck in the sand, and a friend uses a rope to help pull it out.
This friend ties one end of the rope to the rear bumper of her car, loops the rope around a bar on the front of the pickup truck, then
ties the other end to a stationary tree. In this case the two vehicles will not have the same velocity or acceleration, but their motions
are related because they are tied together by the rope. In this case, the rope is acting as the constraint, allowing us to know the
velocity or acceleration of one vehicle based on the velocity or acceleration of the other vehicle.

Figure : This represents a constrained system. The motion of the car and the pickup truck will be related to one another via
rope that is connecting them.

The first thing we will need to do when analyzing these systems is to come up with what is known as the constraint equation. A
constraint equation will be some geometric relationship that will remain true over the course of the motion. In the above example,
imagine the rope is 50 feet long. Using the tree as a stationary point, we can also say that the length of the rope is the distance from
the green car to the tree, plus two times the distance from the pickup truck to the tree (since it must go out to the pickup truck and
then back). If we put this into an equation (the constraint equation) we would have the following.

Once we have a constraint equation that works for positions, we can take the derivative of this equation to find another constraint
equation that relates velocities. In this case, the length of the rope is constant, and therefore the derivative of the length will be zero.
If we take the derivative of the constraint equation again, we wind up with a third constraint equation that relates accelerations.

In these equations, it is important to remember that the values represent the changes in length, rather than direct measures of
velocities. Though both vehicles would have positive velocities in the example above (velocities to the right), one  value will be
positive and one will be negative. This is because the truck is getting closer to the tree while the car is getting further away. A
similar situation will occur for the accelerations, where both vehicles would have positive accelerations even if the  values are a
mix of positive and negative values.

7.6.1

Constraint Equation: Positions L = 50 ft = 2 +LA LB (7.6.1)

Constraint Equation: Velocities

Constraint Equation: Accelerations

= 0 = 2 +L̇ L̇A L̇B

= 0 = 2 +L̈ L̈A L̈B
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/J1aPSrdDzdk.

A truck becomes stuck in the sand at a local beach. To help, a friend takes a rope 50 feet in length, ties one end to her car, loops
the rope around a bar at the front of the truck, and then ties the other end to a stationary tree as shown below. If the car
accelerates at a rate of 0.2 ft/s², what will the velocity of the truck be by the time it gets to the tree?

Figure : problem diagram for Example . A rope looped around the front of a truck, tied at one end to a tree trunk and
at the other to a car's rear bumper, allows the car to pull the truck free of the sand it is stuck in.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/IxO_Nrs7Kj0.
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A man has hooked up a pulley, a rope, and a platform as shown below to lift loads up onto a nearby rooftop. If  is currently 15
meters,  is currently 5 meters, and the man is walking away from the building at a rate of 0.5 meters per second, what is the
current velocity of the platform?

Figure : problem diagram for Example . A man walks away from a 20-meter-high building, holding one end of a
rope that passes over a pulley on the rooftop and raises a load on its other end.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/z3D_2jHLCik.

This page titled 7.6: Dependent Motion Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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7.7: Relative Motion Systems
Relative motion analysis is the analysis of bodies where more than one body is in motion and we are in some way examining the
motion of one moving particle relative to another moving particle. An example would be cars on a highway. If you are in one of
many cars moving down one side of the highway, you and the other cars will all have velocities in a single direction. From your
perspective inside the car, though, fast cars in front of you will appear to be moving away from you and slow cars in front of you
will appear to be moving towards you. By knowing your speed, and by observing how fast the cars are moving away from you or
towards you, you could determine or at least estimate how fast these cars are going. The process of using your speed in conjunction
with the relative velocities of the other cars to find the other cars' speed is relative motion analysis.

Relative Motion in One Dimension: 
In a single dimension, we will usually have at least two moving particles as well as some fixed reference point. We usually call the
fixed reference point , and then label the other points , , and so on. In the diagram, below we can see an example of this, with
a fixed reference point at , a police car at , and a speeding car at .

Figure : In a single dimension we have a fixed reference point , as well as at least two moving bodies (labeled as  and 
in this case). The  vectors represent the distances between bodies, with the subscript indicating the point we are observing and the
point we are observing from. The subscripts should always have the following format: point being observed / point we are
observing from.

As we can see from the diagram above, the sum of the distance from  to   and the distance from  to   will be
equal to the distance from  to  . This gives us our position equation below.

One thing we should notice about the subscripts is that if we keep to our standard naming convention (point being observed / point
we are observing from) then we should be able to see which points cancel out and which remain. In this case, the 's on the top and
bottom on the right cancel out, leaving just a  on the top and an  on the bottom. This matches the subscript on the left of the
equation.

Furthermore, we can take the derivative of this equation to relate velocities, or a double derivative to relate accelerations. This
means that if we know any two of the terms in the equations below, we can solve for the third.

Relative Motion in Two Dimension: 

Just as with one dimension, we can start by examining a set of relative positions. In this case we will use the example of two planes
moving through the sky. We may wish to deduce the position of plane B on a map, based on our observations from plane A. By
using the information we have on our position relative to some set location, along with the relative position read in from on board
instrumentation, we should be able to determine the absolute position (including an  and  coordinate) for plane B.
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Figure : In two dimensions we have a fixed reference point , as well as at least two moving bodies (labeled as  and  in
this case). The  vectors represent the distance vectors between bodies, with the subscript indicating the starting and ending point.
The subscripts should always be formatted end point / starting point.

In two dimensions, we will use the same equations as before, except this time we will be using vectors rather than scalar values in
our equations.

To solve these equations, we will almost always break the vector equations down into a set of component equations. This will let us
solve these equations with simple algebra. Because we have more than one particle, we usually use rectangular coordinate systems
for this with a universal set of  and  coordinates.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/A5aJ2VYvwkw.

A police officer notices a car speeding by. If the police car is traveling 30 m/s and the radar gun measures the relative velocity
to be 15 m/s, how fast is the speeding car actually going? If the police car immediately begins accelerating at a constant rate
and catches up to the speeding car after 15 seconds, what is the rate of acceleration of the police car?

Figure : problem diagram for Example . A police car and a speeding car it is chasing after travel in the same
direction on a straight road.

Solution

7.7.2 O A B
r ⃗ 

Position:

Velocity:

Acceleration:

= +r ⃗ B/O r ⃗ A/O r ⃗ B/A

= +v ⃗ B/O v ⃗ A/O v ⃗ B/A

= +a⃗ B/O a⃗ A/O a⃗ B/A

(7.7.4)

(7.7.5)

(7.7.6)

x y
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/YndovN5yWfc.

A plane has an airspeed of 250 kilometers per hour (airspeed is the velocity of the plane relative to the air) and is flying though
an easterly crosswind with a speed of 20 kilometers per hour. If the plane wants to maintain a direct northerly course, what is
the angle the plane must point into the wind ?

Figure : problem diagram for Example . A plane aiming to fly directly northwards experiences easterly crosswinds.

Solution

WP7.7.1-MRCWP7.7.1-MRC

7.7.2 7.7.1

 Example 7.7.2

(θ)

7.7.4 7.7.2
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/ga1qcV38zYA.

You are in a boat that is traveling through the water in an area of swift currents. One instrument measures your speed with
respect to the water to be 20 ft/s with your boat pointed at a 45-degree angle. GPS, however, measures your absolute speed and
direction to be 25 ft/s at a 55-degree angle. Based on this information, what is the speed and direction of the water current in
this area?

Figure : problem diagram for Example . Instruments on a boat return different readings for its absolute velocity vs.
its velocity relative to the surrounding water.

Solution

WP7.7.2-MRCWP7.7.2-MRC

7.7.3 7.7.2

 Example 7.7.3

7.7.5 7.7.3
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/j8vnM_hrnQg.

This page titled 7.7: Relative Motion Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore
& Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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7.8: Chapter 7 Homework Problems

A car with an initial velocity of 30 m/s accelerates at a constant rate of 12 m/s² . Find the time required for the car to reach a
speed of 60 m/s, and the distance traveled during this time.

Solution

Time = 

Distance = 

A car traveling at 60 miles per hour approaches a fallen log in the road 400 feet away. Assuming the driver immediately slams
on the brakes, what is the required rate of deceleration needed to assure the driver does not hit the log?

Solution

Minimum acceleration: 

A train experiences the acceleration over time detailed below. Draw the velocity-time and position-time diagrams with all key
points and equations labeled, and determine the total distance traveled by the train.

Figure : problem diagram for Exercise . Graph of a train's acceleration in m/s² over a 210-second period.

Solution

Total distance = , plus v-t and s-t diagrams

As a roller coaster cart comes into the gate at the end of the ride, it goes through two sets of brakes. The cart's velocity over
time is shown in the graph below. Draw the acceleration-time and position-time diagrams with all key points and equations
labeled. Determine the total distance the cart travels during this seven-second period.

 Exercise 7.8.1

2.5 s

112.5 m

 Exercise 7.8.2

−9.68 ft/s2

 Exercise 7.8.3

7.8.1 7.8.3

4950 m

 Exercise 7.8.4
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Figure : problem diagram for Exercise . Graph of a roller coaster cart's velocity in ft/s over a 7-second period.

Solution

Total distance = , plus a-t and s-t diagrams.

A tank fires a round at a 30-degree angle with a muzzle velocity of 600 m/s. The round is expected to hit a mountainside one
kilometer away. The mountainside also has an average angle of 30 degrees. How far up the mountainside will the round be
expected to travel before hitting the ground  if we ignore air resistance?

Figure : problem diagram for Exercise . A tank fires a round at an angle, aiming towards a mountainside 1 kilometer
away.

Solution

A plane with a current speed of 600 ft/s is increasing in speed while also making a turn. The acceleration is measured at 40 ft/s²
at an angle 35° from its current heading. Based on this information, determine the rate at which the plane is increasing its speed
(tangential acceleration) and the radius of the turn for the plane.

7.8.2 7.8.4

25.5 ft

 Exercise 7.8.5

(d)

7.8.3 7.8.5

d = 5.37 km

 Exercise 7.8.6
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Figure : problem diagram for Exercise . A plane depicted in a normal-tangential coordinate system undergoes an
acceleration that changes both its speed and its direction.

Solution

A radar station is tracking a rocket with a speed of 400 m/s and an acceleration of 3 m/s² in the direction shown below. The
rocket is 3.6 km away (  = 3600 m) at an angle of 25°. What would you expect , , , and  to be?

Figure : problem diagram for Exercise . A radar station tracks the instantaneous velocity and acceleration of a rocket
located a known distance and angle away.

Solution

The pulley system below is being used to lift a heavy load. Assuming the end of the cable is being pulled at a velocity of 2 ft/s,
what is the expected upwards velocity of the load?

7.8.4 7.8.6

= 32.77 ft/at s2

r = 15, 690 ft

 Exercise 7.8.7

r ṙ r̈ θ̇ θ̈

7.8.5 7.8.7

= 282.8 m/s, = 24.34 m/ṙ r̈ s2

= 0.0786 rad/s, −0.01176 rad/θ̇ θ̈ s2

 Exercise 7.8.8
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Figure : problem diagram for Exercise . A rope's right end is fastened to the ceiling, and it runs alternately through
two pulleys mounted on a load and two pulleys mounted on the ceiling. The left end of the rope is pulled down to raise the
load.

Solution

A cable is anchored at A, goes around a pulley on a movable collar at B, and finally goes around a pulley at C as shown below.
If the end of the rope is pulled with a velocity of 0.5 m/s, what is the expected velocity of the collar at this instant?

Figure : problem diagram for Exercise . A rope attached to the ceiling at one end runs through a pulley mounted on
a sliding collar mounted on a post extending from the ceiling, and then through a pulley mounted on the ceiling. The free rope's
free end is pulled downward, moving the collar.

Solution

You are driving at a velocity of 90 ft/s in the rain while you notice that the rain is hitting your car at an angle 35° from the
vertical, from your perspective. Assuming the rain is actually coming straight down (when observed by a stationary person),
what is the velocity of the rain with respect to the ground?

7.8.6 7.8.8

= 0.5 ft/svL

 Exercise 7.8.9

7.8.7 7.8.9

= 0.3 m/svB

 Exercise 7.8.10
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Figure : problem diagram for Exercise . Illustration of the rain's motion as seen from the perspective of a person in
the car.

Solution

This page titled 7.8: Chapter 7 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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8.0: Video Introduction to Chapter 8

Video introduction to the topics covered in this chapter, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/HLy8efQ45qQ.

This page titled 8.0: Video Introduction to Chapter 8 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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8.1: One-Dimensional Equations of Motion
Kinetics is the branch of dynamics that deals with the relationship between motion and the forces that cause that motion. The basis
for all of kinetics is Newton's Second Law, which relates forces and accelerations for a given body. In its basic form, Newton's
Second Law states that the sum of the forces on a body will be equal to the mass of that body times the rate of acceleration. For
bodies in motion, we can write this relationship out as the equation of motion.

In cases where accelerations only exist in a single dimension, we can reduce the above vector equation into a single scalar equation.
Calling that single direction the  direction, we arrive at the single equation of motion shown below. By entering known forces or
accelerations, we can use this equation to solve for a single unknown force or acceleration term.

Figure : This box being pushed along a frictionless surface can be examined as a one dimensional kinetics problem.
Acceleration exists only in the  direction, related by the equation of motion to the single unbalanced force in the  direction.
Because the forces in the  direction are balanced, the acceleration in that direction will be zero.

Kinetics and the equation(s) of motion relate forces and accelerations, and are often used in conjunction with the kinematics
equations, which relate positions, velocities and accelerations as discussed in the previous chapter. Depending on the problem being
examined, the kinematics equations may need to be examined either before or after the kinetics equations.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/CEL2cpvdQmQ.

A block with a weight of 90 pounds sits on a frictionless surface and a 50-pound force is applied in the  direction, as shown
below.

What is the rate of acceleration of the block?

∑ = m ∗F ⃗  a⃗  (8.1.1)

x

8.1.1
x x

y

∑ = m ∗ = m ∗Fx ax ẍ (8.1.2)

9.1 One Dimensional Equations of Motio9.1 One Dimensional Equations of Motio……

 Example 8.1.1
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What is the velocity and displacement three seconds after the force is applied?

Figure : problem diagram for Example . A box on a flat, frictionless surface experiences a pushing force towards the
right.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/NwmVFrTGd0A.

A block with a weight of 90 pounds sits on a surface with a kinetic coefficient of friction of 0.2, and a 50-pound force is
applied in the  direction as shown below.

What is the rate of acceleration of the block?
What is the velocity and displacement three seconds after the force is applied?

Figure : problem diagram for Example . A box on a flat surface, which produces friction against the box,
experiences a pushing force towards the right.

Solution

8.1.2 8.1.1

WP8.1.1-MRCWP8.1.1-MRC

8.1.2 8.1.1

 Example 8.1.2

x

8.1.3 8.1.2
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/9BgdnzTUO9I.

A 2000-lb elevator decelerates downward, going from a speed of 25 ft/s to a stop in a distance of 50 ft.

What is the average rate of deceleration?
What is the tension in the cable supporting the elevator during this period?

Figure : A descending glass-sided elevator.

Solution

WP8.1.2-MRCWP8.1.2-MRC

8.1.3 8.1.2

 Example 8.1.3

8.1.4
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/I2j0peOLzro.

A rocket test sled is being used to test a solid rocket booster (mass = 1000 kg). It’s known that generally a solid rocket
booster’s force will fit the equation . If the rocket has an initial thrust of 10 kN, and achieves a speed of 150
m/s and travels 700 meters during a 10-second test run, determine the constants ,  and  for the rocket.

Figure : A rocket sled holding a solid booster, moving rightwards on a straight track.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/tmUOZXuAzNE.

WP8.1.3-MRCWP8.1.3-MRC

8.1.4 8.1.3

 Example 8.1.4

F = A +Bt– Ct2

A B C

8.1.5

WP8.1.4-MRCWP8.1.4-MRC

8.1.5 8.1.4
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8.2: Equations of Motion in Rectangular Coordinates
To start our discussion of kinetics in two dimensions, we will examine Newton's Second Law as applied to a fixed coordinate
system. In its basic form, Newton's Second Law states that the sum of the forces on a body will be equal to the mass of that body
times its rate of acceleration. For bodies in motion, we can write this relationship out as the equation of motion.

With rectangular coordinates in two dimensions, we will break this single vector equation into two separate scalar equations. To
solve the equations, we simply break any given forces and accelerations down into  and  components using sines and cosines and
plug those known values in. With two equations, we should be able to solve for up to two unknown force or acceleration terms.

Just as with a single dimension, the equations of motion are often used in conjunction with the kinematics equations that relate
positions, velocities and accelerations as discussed in the previous chapter. Depending on the problem being examined, the
kinematics equations may need to be examined either before or after the kinetics equations.

Rectangular coordinates can be used in any kinetics problem; however, they work best with problems where the forces do not
change direction over time. Projectile motion is a good example of this, because the gravity force will maintain a constant
direction, as opposed to the thrust force on a turning plane, where the thrust force changes direction with the plane.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/2D15kYAYUYg.

You are controlling a satellite with a mass of 300 kg. The main and lateral thrusters can exert the forces shown. How long do
you need to run each of the thrusters to achieve the final velocity as shown in the diagram? Assume the satellite has zero initial
velocity.

∑ = m ∗F ⃗  a⃗  (8.2.1)

x y

∑Fx

∑Fy

= m ∗ = m ∗ax ẍ

= m ∗ = m ∗ay ÿ

(8.2.2)

(8.2.3)

9.2 The Equations of Motion in Rectang9.2 The Equations of Motion in Rectang……

 Example 8.2.1
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Figure : problem diagram for Example . A satellite facing the right experiences a rightwards force form its main
thrusters and an upwards force from its lateral thrusters, changing both its speed and direction.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/YawjRTV89Lo.

A man in a flatbed truck that starts at rest moves up a hill at an angle of 10 degrees. If he is carrying a 600-kg crate in the back
and the static coefficient of friction is 0.3, what is the maximum rate of acceleration before the crate slides off of the back of
the truck? How long will it take the truck to reach a speed of 25 m/s?

Figure : problem diagram for Example . A truck with a 600-kg load on its bed begins to move up a 10° incline.
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Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/A4ZnX9vWfMA.

This page titled 8.2: Equations of Motion in Rectangular Coordinates is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

WP8.2.2-MRCWP8.2.2-MRC

8.2.3 8.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/50603?pdf
https://youtu.be/A4ZnX9vWfMA
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/08%3A_Newton's_Second_Law_for_Particles/8.02%3A_Equations_of_Motion_in_Rectangular_Coordinates
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=A4ZnX9vWfMA
https://www.youtube.com/watch?v=A4ZnX9vWfMA


8.3.1 https://eng.libretexts.org/@go/page/53984

8.3: Equations of Motion in Normal-Tangential Coordinates
Continuing our discussion of kinetics in two dimensions, we can examine Newton's Second Law as applied to the normal-
tangential coordinate system. In its basic form, Newton's Second Law states that the sum of the forces on a body will be equal to
the mass of that body times the rate of acceleration. For bodies in motion, we can write this relationship out as the equation of
motion.

Just as we did with with rectangular coordinates, we will break this single vector equation into two separate scalar equations. This
involves identifying the normal and tangential directions and then using sines and cosines to break the given forces and
accelerations down into components in those directions.

Figure : When working in the normal-tangential coordinate system, any given forces or accelerations can be broken down
using sines and cosines as long as the angle of the force or acceleration is known relative to the normal and tangential directions.

Just as with rectangular coordinates, these equations of motion are often used in conjunction with the kinematics equations, which
relate positions, velocities and accelerations as discussed in the previous chapter. In particular, we will often substitute the known
values below for the normal and tangential components for acceleration.

Normal-tangential coordinates can be used in any kinetics problem; however, they work best with problems where forces maintain
a consistent direction relative to some body in motion. Vehicles in motion are a good example of this: the direction of the forces
applied are largely dependent on the current direction of the vehicle, and these forces will rotate with the vehicle as it turns.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/PK2swJu37sg.

A 1000-kg car travels over a hill at a constant speed of 100 kilometers per hour. The top of the hill can be approximated as a
circle with a 90-meter radius.

What is the normal force the road exerts on the car as it crests the hill?
How fast would the car have to be going to get airborne?

Figure : problem diagram for Example . A car is at the top of a hill, moving towards the right at a constant speed of
100 km/hr.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/KOLdXpQ5M1Q.
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A 2500-pound car is traveling 40 feet per second. The coefficient of friction between the car’s tires and the road is 0.9.

If the car is maintaining a constant speed, what is the minimum radius of curvature before slipping?
Assuming the car is speeding up at a rate of 10 ft/s², what is the minimum radius of curvature before slipping?

Figure : problem diagram for Example . A car travels around a circular path in a counterclockwise direction.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/Gw0_H0wdqm8.

15-kg boxes are being transported around a curve via a conveyor belt, as shown below. Assuming the curve has a radius of 3
meters and the boxes are traveling at a constant speed of 1 meter per second, what is the minimum coefficient of friction
needed to ensure the boxes don’t slip as they travel around the curve?
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Figure : problem diagram for Example ; a level section of conveyor belt in a semicircular shape.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/4z73Pc3s_TE.
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8.4: Equations of Motion in Polar Coordinates
To finish our discussion of the equations of motion in two dimensions, we will examine Newton's Second law as it is applied to the
polar coordinate system. In its basic form, Newton's Second Law states that the sum of the forces on a body will be equal to mass
of that body times the rate of acceleration. For bodies in motion, we can write this relationship out as the equation of motion.

Just as we did with with rectangular and normal-tangential coordinates, we will break this single vector equation into two separate
scalar equations. This involves identifying the  and  directions and then using sines and cosines to break the given forces and
accelerations down into components in those directions.

Figure : When working in the polar coordinate system, any given forces or accelerations can be broken down using sines and
cosines as long as the angle of the force or acceleration is known relative to the  and  directions.

Just as with our other coordinate systems, the equations of motion are often used in conjunction with the kinematics equations,
which relate positions, velocities and accelerations as discussed in the previous chapter. In particular, we will often substitute the
known values below for the  and  components for acceleration.

Polar coordinates can be used in any kinetics problem; however, they work best with problems where there is a stationary body
tracking some moving body (such as a radar dish) or there is a particle rotating around some fixed point. These equations will also
come back into play when we start examining rigid body kinematics.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/XiuQSSVdRKk.

A device consists of two masses, each 0.5 kg in mass, tethered to a central shaft. The tethers are each 0.75 meters long and
each tether currently makes a 25-degree angle with the central shaft. Assume the central shaft is spinning at a constant rate.
What is the rate at which the shaft is spinning? If we want it to spin at exactly 100 rpm, what should the angle of the tethers be?

Figure : problem diagram for Example . A spinning shaft supports two identical tethers at its top end, with each
tether holding a mass and splayed out symmetrically from the shaft.

Solution
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/fGsoMdR1H9I.

A catapult design consists of a steel weight on a frictionless rod. The rod spins at a constant rate of 4 radians per second and
when  is 45 degrees from the horizontal, the 30-lb weight is released from its position 2 feet from the center of rotation of the
shaft. What is the force the shaft exerts on the weight at the instant before and the instant after it is released? What is the
acceleration of the weight along the shaft the instant after it is released?

Figure : problem diagram for Example . A central vertical shaft that rotates supports a horizontal rod bearing a
releasable weight.

Solution
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/bKsi80wzLUY.
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8.5: Chapter 8 Homework Problems

A 50-kg box is being pulled across a surface by a force of 200 N in the direction shown below. If the coefficient of friction is
0.3, what is the rate of acceleration of the box and how far will the box move in a three-second period?

Figure : problem diagram for Exercise . A box is pulled across a horizontal surface by a force directed 20° above the
horizontal.

Solution

A 3-kg cannonball is shot out of a cannon with an initial velocity of 300 m/s at a 25-degree angle. A headwind exerts a
constant 5 N horizontal force. How far will the cannonball travel horizontally before hitting the ground?

Figure : problem diagram for Exercise . Diagram of the parabolic path the cannonball is expected to travel before
hitting the ground to the right of the cannon, with the leftwards headwind force on the ball shown.

Solution

A 1-kg block sits on a rotating table as shown below. If the static coefficient of friction is assumed to be 0.4, what is the
maximum angular velocity  that can be achieved before the block begins to slip?

Figure : problem diagram for Exercise . A small block sits 2 meters from the center of a level, rotating circular table.
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Solution

A 5-kg instrument is held via a cable to a space station. The instrument and space station are both rotating at a rate of 0.5 rad/s
when the space station begins retracting the cable at a constant rate of 0.25 m/s.

What is the tension in the cable at this instant?
What will the angular acceleration  of the cable be? Hint: there are no forces in the  direction.

Figure : problem diagram for Exercise . A space station and a cable-connected instrument, rotating as a system,
draw closer together as the station pulls in the cable at a constant rate.

Solution

This page titled 8.5: Chapter 8 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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9.0: Video Introduction to Chapter 9

Video introduction to topics covered in this chapter, provided by Dr. Jacob Moore. YouTube source: https://youtu.be/2uuVtzA_SFs.
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Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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9.1: Conservation of Energy for Particles
The concepts of work and energy provide the basis for solving a variety of kinetics problems. Generally, this method is called the
Energy Method or the Conservation of Energy, and it can be boiled down to the idea that the work done to a body will be equal
to the change in energy of that body. Dividing energy into kinetic and potential energy pieces as we often do in dynamics problems,
we arrive at the following base equation for the conservation of energy.

It is important to notice that unlike Newton's Second Law, the above equation is not a vector equation. It does not need to be
broken down into components which can simplify the process. However, we only have a single equation and therefore can only
solve for a single unknown, which can limit the method.

Work: 
To understand how to use the energy method we first need to understand the concepts of work and energy. Work in general is a
force exerted over a distance. If we imagine a single, constant force pushing a body in a single direction over some distance, the
work done by that force would be equal to the magnitude of that force times the distance the body traveled. If we have a force that
is opposing the travel (such as friction), it would be negative work.

Figure : In instances with a constant force and a constant direction, the work done to a body will be equal to the magnitude of
that force times the distance the body travels. For forces opposing the motion, the work will be negative.

For instances where forces and the direction of travel do not match, the component of the force in the direction of travel is the only
piece of the force that will do work. Following through with this logic, forces that are perpendicular to the direction of travel for a
body will exert no work on a body because there is no component of the force in the direction of travel.

Figure : Only the components of a force in the direction of travel exert work on a body. Forces perpendicular to the direction
of travel will exert no work on the body.

W = ΔKE+ΔPE (9.1.1)

9.1.1

= ∗ dWpush Fpush (9.1.2)

= − ∗ dWfriction Ffriction (9.1.3)
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In the case of a force that does not remain constant, we will need to account for the changing force. To do this we will simply
integrate the force function over the distance traveled by the body. Just as before, only the component of the force in the direction
of travel will count towards the work done, and forces opposing travel will be negative work.

Energy: 

When discussing energy in engineering dynamics, we will usually break energy down into kinetic energy and potential energy.
Kinetic energy is the the energy mass in motion, while potential energy represents the energy that is stored up due to the position or
stresses in a body.

In its equation form, the kinetic energy of a particle is represented by one half of the mass of the body times its velocity squared. If
we wish to determine the change in kinetic energy, we would simply take the final kinetic energy minus the initial kinetic energy.

As a note, a body that is rotating will also have rotational kinetic energy, but we will save that for our discussion of work and
energy with rigid bodies.

Potential energy, unlike kinetic energy, is not really energy at all. Instead, it represents the work that a given force will potentially
do between two instants in time. Potential energy can come in many forms, but the two we will discuss here are gravitational
potential energy and elastic potential energy. These represent the work that the gravitational force and a spring force will do,
respectively. We often use these potential energy terms in place of the work done by gravity or springs. When including these
potential energy terms, it's important to not additionally include the work done by gravity or spring forces.

The change in gravitational potential energy for any system is represented by the product of the mass of the body, the value  (9.81
m/s  or 32.2 ft/s  on the earth's surface), and the vertical change in height between the start position and the end position. In
equation form, this is as follows.

Figure : When finding the change in gravitational potential energy, we multiply the mass by  (giving us the weight of the
object) and then multiply that by the change in the height of the object, regardless of the path taken.

To find the change in elastic potential energy, we will need to know the stiffness of the spring (represented by , in units of force
per distance) as well as the distance the spring has been stretched or compressed from its natural resting length (represented by ,
in units of distance). Once we have those values, the elastic potential energy can be calculated by multiplying one half of the
stiffness by the square of the distance . To find the change in elastic potential energy, we simply take the final elastic potential
energy and subtract the initial elastic potential energy.
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Going back to our original conservation of energy equation, we simply plug the appropriate terms on each side (work on the left
and energies on the right) and balance the two sides to solve for any unknowns. Terms that do not exist or do not change, such as
elastic potential energy in a problem with no springs or  in a problem where there is no change in the speed of the body, can
be set to zero.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/FMkHrOjKlXs.

A 16-pound crate slides down a ramp as shown below. The crate is released from a height of 10 feet above the ground.

What is the work done by gravity?
What is the change in gravitational potential energy?

Figure : problem diagram for Example . A 16-lb crate initially 10 feet above the ground slides down a ramp of
incline 60°.

Solution

ΔP = k − kEspring

1

2
x2
f

1

2
x2
i (9.1.10)

ΔKE
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Video : Worked solution to example problem . YouTube source: https://youtu.be/ZkopO1aTj54.

A spring with an unstretched length of 40 cm and a  value of 120 N/cm is used to lift a 5-kg box from a height of 20 cm to a
height of 30 cm. If the box starts at rest, what would you expect the final velocity to be?

Figure : problem diagram for Example . A vertically oriented spring supporting a box on its upper end is stretched to
lift the load.

Solution

Work Energy - WP001 - DJMWork Energy - WP001 - DJM

9.1.2 9.1.1

Example 9.1.2
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Video : Worked solution to example problem . YouTube source: https://youtu.be/T_5JT4XFQN8.

A 2,000-pound wrecking ball hangs from the end of a 40-foot cable. If the wrecking ball is released from an angle of 40
degrees from vertical, what would the expected maximum velocity at the bottom point of the travel path be?

Figure : problem diagram for Example . A wrecking ball on a cable is raised slightly above its resting position, with
the cable kept taut, then released.

Solution

Work Energy - WP002 - DJMWork Energy - WP002 - DJM

9.1.3 9.1.2

Example 9.1.3
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Video : Worked solution to example problem . YouTube source: https://youtu.be/UkcpT1lfIDY.

A 24,000-kilogram aircraft is launched from an aircraft carrier using a hydraulic catapult. If the force the catapult exerts over
the 90-meter runway is shown in the graph below:

What is the work done by the catapult?
What is the speed of the plane at the end of the runway?

Figure : problem diagram for Example . Graph of the force exerted by the catapult vs distance traveled over the
runway, showing a linear relationship between these quantities.

Solution

Video : Worked solution to example problem . YouTube source: https://youtu.be/DfSMeUm1SG8.

This page titled 9.1: Conservation of Energy for Particles is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
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9.2: Power and Efficiency for Particles
Related to the concepts of work and energy are the concepts of power and efficiency. At its core, power is the rate at which work is
being done, and efficiency is the percentage of useful work or power that is transferred from the input to the output of some system.

Power 
Power at any instant is defined as the derivative of work with respect to time. If we look at the average power over a set period, we
can simply measure the work done and divide that by the time. Work is defined as the force times the distance traveled, and
distance over time is the velocity of a object, giving us many possible options for relating power, work, force, distance, time, and
velocity.

The common units of power are watts for the metric system, where one watt is defined as one joule per second, or one Newton-
meter per second, and horsepower in the English system, where one horsepower is defined as 550 foot-pounds per second.
Maximum power ratings are often a primary specification for motors and engines, as gear trains can easily change the torque
provided by a motor but the overall power will not be altered by gearing.

Figure : Assuming the two cars above have the same mass, it would take the same amount of work to get them up to a set
speed (such as 60 miles per hour). However, the more powerful car would be able to get to this speed in a much shorter time
period.

Efficiency 

Any devices with work/power inputs and outputs will have some loss of work or power between that input and output, due to
things like friction. While energy is always conserved, some energies such as heat may not be considered useful. A measure of the
useful work or power that makes it from the input of a device to the output is the efficiency. Specifically, efficiency is defined as
the work out of a device divided by the work put into the device. With power being the work over time, efficiency can also be
described as power out divided by the power in to a device (the time term would cancel out, leaving us with our original
definition).

It is impossible to have efficiencies greater than one (or 100%) because that would be a violation of the conservation of energy;
however, for most devices we wish to get the efficiencies as close to one as possible. This is not only because greater efficiencies
waste less work/power, but also because any work or power that is "lost" in the device will be turned into heat that may build up.

P =
dW

dt
(9.2.1)

= = = F ∗ vPave

W

t

F ∗ d

t
(9.2.2)
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/BxK5D1DnD1Q.

If a car delivers an average 100 horsepower to the road and weighs a total of 1.2 tons, how long will it take to go from 0 to 60
mph?

Figure : A car driving quickly down a straight, tree-lined road.

Solution

Video : Worked solution to example problem . YouTube source: https://youtu.be/ju7TOLHWEZg.

Your car broke down and now needs to be repaired. How much power is required for a lift to raise your 1.2 ton car 6 feet off
the ground in 15 seconds?

Example 9.2.1

9.2.2

Power WP001 DJMPower WP001 DJM

9.2.2 9.2.1

Example 9.2.2
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Figure : A car in a mechanic's shop is raised off the ground by a lift.

Solution

Video : Worked solution to example problem . YouTube source: https://youtu.be/BCVOzDwPR7c.

The drag force of air on a car is equal to

where  is the is the density of the air,  is the velocity,  is the drag coefficient, and  is the frontal area. If a Mazda RX7 has
a drag coefficient of 0.29, a frontal area of 5.95 square feet, and a max power output of 146 hp, and the density of air is
0.002326 slug/ft³, what is the theoretical top speed of the Mazda assuming it only has to fight wind resistance?

Figure : A red Mazda RX7.

Solution

9.2.3

Power WP002 DJMPower WP002 DJM

9.2.3 9.2.2

Example 9.2.3
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Video : Worked solution to example problem . YouTube source: https://youtu.be/DaJIXMjRfZo.

This page titled 9.2: Power and Efficiency for Particles is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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9.3: Conservation of Energy for Systems of Particles
Just as we used the energy method for a single particle, we can also use the energy method for a system of particles. As a reminder,
the conservation of energy equation states that the change in energy of a body (including kinetic and potential energies) will be
equal to the work done to a body between during that time.

For a system of particles, the sum of the work done to all particles will be equal to the change in energy of all particles collectively,
essentially combining multiple conservation of energy equations into one.

This would seem to make one complex equation out of multiple simple conservation of energy equations (applying the
conservation of energy separately to each body), but there is an advantage in that internal forces in the system will cancel out. In
the diagram below, we can see a system of two particles connected via a cable. Examining the bodies separately, we would have
two tension forces and a friction force all doing work to one box or the other. In the single equation for the system of boxes,
however, the work done by the two tension forces (one positive and one negative) will sum up to zero. This will be true for any
forces that are exerted between the bodies in the system, and forces like these are known as internal forces. The friction force, on
the other hand, is an example of an external force, in that it exists between the top box and the surface (which is not part of our
system).

Figure : If we count the two boxes in this diagram as our system, then the tension forces would count as internal forces and
can be ignored in our energy conservation equation. Only external forces such as the friction force need to be included as part of
the work done on the system.

In the end, the sum of the work done by external forces will be equal to the change in total energy for the system of particles.
Since we only have a single equation, we can only solve for a single unknown. We will often have to go back to our kinematics
equations to relate the velocities and displacements of the various bodies to one another. Since these systems often consist of bodies
connected to one another via cables, dependent motion analysis in particular will often come into play.

W = ΔK PEEΔ (9.3.1)

∑W =∑ΔKE+∑ΔPE (9.3.2)

9.3.1
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/r1RBsxURcbY.

Two blocks are connected by a massless rope and a frictionless pulley as shown below. If the coefficient of friction between
block A and the surface is 0.4, what is the speed of the blocks after block A has moved 6 ft?

Figure : problem diagram for Example . The 5-lb box B hangs from a cable that runs over a pulley and connects to
the 10-lb box A sitting on a flat surface.

Solution

Video : Worked solution to example problem . YouTube source: https://youtu.be/UW4HXJNId0A.

10.5 The Conservation of Energy for Sy10.5 The Conservation of Energy for Sy……

Example 9.3.1

9.3.2 9.3.1

Conservation Energy System ParticlConservation Energy System Particl……
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The elevator shown below has a mass of 1500 kg and the counterweight has a mass of 500 kg. At some point the cable attached
to the motor snaps, causing the elevator to begin falling. After falling 3 meters with no outside forces, what is the speed of the
elevator? If the emergency brake is then applied at this point (3 m below the original position), exerting a constant force of
15,000 N, how much farther will the elevator fall before coming to a stop?

Figure : problem diagram for Example . An elevator is attached to the roof of a building only by a single cable,
which is connected by pulleys to a counterweight at its free end.

Solution

Video : Worked solution to example problem . YouTube source: https://youtu.be/QWvh5wZt7jM.

This page titled 9.3: Conservation of Energy for Systems of Particles is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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9.4: Chapter 9 Homework Problems

A car with a mass of 1100 kg locks up its brakes when it is traveling at 50 km/hr, stopping over a distance of 18 meters. If the
same car were to lock up its brakes when traveling 80 km/hr, how far would you expect the car to slide before coming to a
stop? (Hint: assume the same friction force in both cases).

Figure : A car with locked-up brakes, visibly skidding.

Solution

A 2500-lb car traveling 60 mph (88 ft/s) impacts a highway crash barrier as shown below. If the barrier were designed to exert
the following force over the 40-ft distance of the barrier, how far would you expect the car to travel after impacting the barrier?

Figure : problem diagram for Exercise . A highway crash barrier and the graph of the force it exerts on an impacting
car over the barrier's length.

Solution

 (assuming no holes in the barrier)

The Duquesne Incline transports passengers up a 30.5 degree slope. If a fully loaded car has a mass of 5500 kg, what power is
required to maintain an uphill speed of 10 km/hr?

Exercise 9.4.1

9.4.1

d = 46.06m

Exercise 9.4.2

9.4.2 9.4.2

d = 25.03 ft

Exercise 9.4.3
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Figure : The Duquesne Incline, a cable car that transports passengers up a steep hillside.

Solution

A bungee jumper with a weight of 150 lbs uses a bungee cord with an unstretched length of 60 feet.

Assuming no air resistance, what will the jumper’s velocity be just before the bungee cord starts to stretch?
If the bungee jumper falls a maximum distance of 150 feet, what is the spring constant of the bungee cord?

Figure : A man bungee-jumping above a lake.

Solution

An 1100-kg truck is being used to raise a 100-kg box using the setup shown below. When the box is at a height of 3 meters, the
box has a velocity of 1 m/s.

How far did the truck travel to lift the box this high? (Hint: this is a dependent motion problem)
What is the velocity of the truck at this time?
What is the work that the truck has done over this time?

9.4.3

P = 76.13 kW

Exercise 9.4.4

9.4.4

v= 62.16 ft

k= 5.55 lb/ft

Exercise 9.4.5
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Figure : problem diagram for Exercise . A cable attached at one end to a beam 4 feet above the ground passes
through a pulley on a box on the ground and through another pulley on the beam, before being attached to the rear of a truck 5
feet away from the box. The truck drives away from the box to raise it from the ground.

Solution

This page titled 9.4: Chapter 9 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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10.0: Video Introduction to Chapter 10

Video introduction to the topics covered in Chapter 10, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/Xq39c7jZWPo.

This page titled 10.0: Video Introduction to Chapter 10 is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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10.1: Impulse-Momentum Equations for a Particle
The concepts of impulse and momentum provide a third method of solving kinetics problems in dynamics. Generally this method
is called the Impulse-Momentum Method, and it can be boiled down to the idea that the impulse exerted on a body over a given
time will be equal to the change in that body's momentum. The impulse is usually denoted by the variable  (not to be confused
with the polar moment of inertia, which is also J) and the momentum is a body's mass times its velocity. Impulses and velocities are
both vector quantities, giving us the basic equation below.

For two-dimensional problems, we can break the single vector equation down into two scalar components to solve. In this case, we
simply need to break all forces and velocities into  and  components.

Impulse: 
The concept of an impulse in its most basic form is a force integrated over a time. For a force with a constant magnitude, we can
find the magnitude of the impulse by multiplying the magnitude of the force by the time that force is exerted. If the force is not
constant, we simply integrate the force function over the set time period. The direction of the impulse vector will be the direction of
the force vector and the units will be a force times a time (Newton-seconds or pound-seconds, for example).

In many cases, we will discuss impulsive forces. This is an instance where we have very large forces acting over a very short time
frame. In instances of impulsive forces, it is often difficult to measure the exact magnitude of the force or the time. In these cases
we may only be able to deduce the magnitude of the impulse as a whole via the observed change in momentum of the body.

Figure : The force the tennis racket exerts on the ball will be very large, but it will be exerted over a very short period of
time. Because of this, the force is considered an "impulsive" force. It would be difficult to determine the exact magnitude of the
force or time frame of the impact, but by examining the velocity of the ball before and after the impact we could deduce the overall
magnitude of the impulse as a whole. Photo by David Iliff. License: CC BY-SA 3.0.

J

= m −mJ ⃗  v ⃗ f v ⃗ i (10.1.1)

x y

= m −mJx vfx vix (10.1.2)

= m −mJy vfy viy (10.1.3)

Constant Magnitude Force:

Non-Constant Magnitude Force:

= ∗ tJ ⃗  F ⃗ 

= ∫ (t)dtJ ⃗  F ⃗ 

(10.1.4)

(10.1.5)

10.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/54732?pdf
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/10%3A_Impulse_and_Momentum_in_Particles/10.01%3A_Impulse-Momentum_Equations_for_a_Particle


10.1.2 https://eng.libretexts.org/@go/page/54732

Momentum: 

The momentum of a body will be equal to the mass of the body times its current velocity. Since velocity is a vector, the momentum
will also be a vector, having both magnitude and a direction. Unlike the impulse, which happens over some set time, the
momentum is captured as a snapshot of a specific instant in time (usually right before and after some impulse is exerted). The units
for momentum will be mass times unit distance per unit time. This is usually kilogram-meters per second in metric, or slug feet per
second in English units.

Conservation of Momentum: 

In instances where there is no impulse exerted on a body, we can use the original equation to deduce that there will be no change in
momentum of the body. In this instance, momentum is conserved. This will also hold for systems of bodies, where if no external
impulses are exerted on the bodies in a system, the momentum will be conserved as a whole. This is the basis of analysis for many
collisions, as is discussed in the following sections.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/yC9wt53ho9k.

A tennis ball (0.06 kg) is served to a tennis player at a speed of 10 m/s. The player then returns the ball at a speed of 36 m/s.

What is the impulse exerted on the ball?
If a high-speed camera reveals the impact lasted 0.02 seconds, what is the average force exerted on the ball during the
collision?

Figure : A player in a tennis match serves a ball.
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Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/WzD-ZyJy-T4.

A plane with a mass of 80,000 kg is traveling at a velocity of 200 meters per second when the engines cut out. Twenty seconds
later, it’s noticed that the velocity has dropped to 190 m/s. Assuming the plane is not gaining or losing altitude, what is the
average drag force on the plane?

Figure : An airliner in flight.

Solution

WP10 1 1 MRCWP10 1 1 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/dzhIT3r3u3k.

The plot below shows the thrust generated by the engine on a jet fighter (mass of 2500 kg) over ten seconds. If the plane is
starting from rest on a runway, and friction and drag are negligible, determine the speed of the plane at the end of these ten
seconds.

Figure : problem diagram for Example . Graph of the thrust force generated by a jet engine for the first 10
seconds of its motion starting from rest.

Solution

WP10 1 2 MRCWP10 1 2 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/XGxVjLa6wqQ.

This page titled 10.1: Impulse-Momentum Equations for a Particle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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10.2: Surface Collisions and the Coefficient of Restitution
Here we will use the term surface collision to describe any instance where a body impacts and rebounds off a solid and unmoving
surface. A clear example of a surface collision is a basketball bouncing off a hard floor. The basketball will have some velocity
before the collision and some second velocity after the collision, with the floor exerting an impulsive force during the collision that
causes this change in velocity.

To analyze this collision, we will first need to set up a normal direction (perpendicular to the surface) and a tangential direction
(parallel to the surface) for our problem, and break our velocities down into components in these directions. Assuming minimal
friction during the impact, we will have an impulsive impact force acting entirely in the normal direction. This fact will form the
basis for our analysis.

Figure : In a surface collision, the impulsive collision force will act in the normal direction. Because there is no force in the
tangential direction, the velocity in the tangential direction will not change.

Because the impact force acts entirely in the normal direction, there will be no other significant force to change the momentum of
the body in the tangential direction. Assuming the mass remains constant for the body, this means that the velocity must remain
constant in the tangential direction because of the conservation of momentum.

To relate the velocities in the normal direction before and after the collision, we will use something called the coefficient of
restitution. The coefficient of restitution is a number between 0 and 1 that measures the "bounciness" of the body and the surface
in the collision. Specifically, for a single body being bounced perpendicularly off a surface, the coefficient of restitution is defined
as the speed of the body immediately after bouncing off the surface divided by the speed immediately before bouncing off the
surface. If we use velocities in place of speed, we will put a negative sign in our equation because the bounce causes a change in
direction for the body.

In instances where the body is being bounced off the surface at an angle, the impact force is entirely in the normal direction and the
coefficient of restitution relationship specifically applies to the components of the velocities in the normal direction.

This relationship can be applied to elastic collisions (where  would be equal to 1), semi-elastic collisions (where  would be some
number between 0 and 1) and inelastic collisions (where  would be equal to 0).

10.2.1

=vi,t vf,t (10.2.1)
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/MaY6YEWhwJc.

A basketball with an initial speed of 3 meters per second impacts a hard floor at the sixty degree angle as shown below. If the
collision has a coefficient of restitution of 0.8, what is the expected speed and angle of the basketball after the impact?

Figure : problem diagram for Example . A basketball with a known initial velocity bounces off a floor with a
known coefficient of restitution.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/A8hl3JPUkB4.

11.3 Surface Collisions and the Coe�ci11.3 Surface Collisions and the Coe�ci……
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A bounce test is used to sort ripe cranberries from unripe cranberries. In this test, cranberries are dropped vertically onto a steel
plate sitting at a 45-degree angle. After the impact, a cranberry is observed to bounce off at an angle of 20 degrees below the
horizontal. Based on this information, what is the coefficient of restitution for the cranberry?

Figure : problem diagram for Example . A cranberry falls straight down onto a tilted plate and bounces off at a
known angle.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/wpPYTx52CD8.

This page titled 10.2: Surface Collisions and the Coefficient of Restitution is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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10.3: One-Dimensional Particle Collisions
The Impulse-Momentum Method is particularly useful when examining collisions between bodies. When examining the bodies
colliding as a system of particles, such as the two bodies colliding below, the impulses exerted by internal forces, or the forces
exerted between two bodies within the system, will be equal and opposite and hence cancel out in our impulse-momentum
equation.

Figure : When two bodies collide, Newton's Third Law ensures that the normal forces from the collision will always be
equal and opposite. This means that the impulses will be equal and opposite and will cancel out in our impulse-momentum
equation when examining the system of equations.

Because the impulsive forces of the collision are so large over the very short period of the collision, other external forces are
typically regarded as insignificant. This means that for our collision, there is no external impulse and therefore there is no change to
the sum of the momentums of the bodies. This is known as the conservation of momentum, and it will hold true for all types of
collisions.

In the case of the collision of two bodies, body A and body B in this case, we can break apart the sums as follows. The subscripts in
this case are being used to denote both the body (A or B) and the initial versus final states (before or after the collision).

In addition to the conservation of momentum equation, we will also usually generate a second equation we can use alongside the
conservation of momentum. This second equation will depend on the type of collision, though, with the three possible collision
types being elastic, inelastic, and semi-elastic.

Elastic Collisions 
An elastic collision is a collision in which all energy is assumed to be conserved as kinetic energy. In reality, true elastic collisions
do not exist as some energy will always be converted to heat or sound, but in practice two very rigid bodies that collide without
much deformation can get very close to the ideal of an elastic collision. An example of a collision that is close to elastic is a set of
billiard balls colliding, as in Figure .

An elastic collision conserves energy in addition to momentum, so the conservation of energy equation will be our second equation
that we use to supplement the conservation of momentum.

Inelastic Collisions 
An inelastic collision is the opposite of an elastic collision, in that much of the energy of the system is lost in the deformation of the
bodies. In fact, in an inelastic collision the bodies must deform in such as way that they stick together after the collision. With the
two bodies stuck together, they will have matching final velocities.

10.3.1

∑ = 0 =∑m −∑mJ ⃗  v ⃗ f v ⃗ i (10.3.1)

∑m −∑mv ⃗ f v ⃗ i (10.3.2)
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Semi-Elastic Collision 

Finally, anything between an elastic collision and an inelastic collision is considered a semi-elastic collision. This is a collision
where less than one hundred percent of the kinetic energy is conserved, but the objects do not stick together following the collision.
In cases of semi-elastic collisions, we will use something called the coefficient of restitution (usually denoted by the Greek letter
epsilon, ), to supplement our conservation of momentum equation.

The coefficient of restitution is a number between 0 and 1 that measures the "bounciness" of the two bodies in the collision.
Specifically, for a single body bouncing off a rigid surface, the coefficient of restitution is defined as the negative of the velocity
after bouncing off the surface divided by the velocity before bouncing off the surface.

A perfectly elastic collision would have a coefficient of restitution of one (no velocity would be lost), while a totally inelastic
collision would have a coefficient of restitution of zero. All other collisions will have a coefficient of restitution that lies
somewhere in between.

For cases where two bodies are bouncing off of one another, we would simply use relative velocities rather than the velocity of a
single body. Using the velocity of body A relative to the velocity of body B, we come up with the equation below.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/lFZ8Mr4Vcow.

A cue ball weighing 0.17 kg, traveling at 1 m/s, impacts a stationary billiard ball with a mass of 0.15kg as shown below. If the
balls collide directly and the collision is elastic, what will the velocities be after the collision (ignore rotational energies)?

Figure : problem diagram for Example . A cue ball traveling at 1 m/s directly impacts a stationary billiard ball.

Solution

=v ⃗ A,f v ⃗ B,f (10.3.5)
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(10.3.6)

ϵ = − = −
v ⃗ f,A/B

v ⃗ i,A/B

−v ⃗ f,A v ⃗ f,B

−v ⃗ i,A v ⃗ i,B
(10.3.7)
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/n1g5RwuFYJI.

A 4.2 g bullet traveling at 965 m/s becomes lodged in a stationary log with a mass of 1.5 kg.

What is the the velocity of the log and the bullet immediately after the collision?
What percentage of the kinetic energy was lost in the collision?

Figure : problem diagram for Example . A bullet traveling at 965 m/s is flying directly towards a large log, where
it will become lodged.

Solution

WP10 2 1 MRCWP10 2 1 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/FyyziesH9LI.

Two masses on a frictionless rod as shown below are set to impact with each other. If the coefficient of restitution between the
objects is 0.6, what is the velocity of each body after the collision?

Figure : problem diagram for Example . Two different masses strung on a frictionless rod travel towards each
other at different speeds.

Solution

WP10 2 2 MRCWP10 2 2 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/MOUG_7BqcLY.

This page titled 10.3: One-Dimensional Particle Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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10.4: Two-Dimensional Particle Collisions
To analyze collisions in two dimensions, we will need to adapt the methods we used for a single dimension. To start, the
conservation of momentum equation will still apply to any type of collision.

This is, of course, a vector equation, so we can break all those velocities into components to make our one vector equation into two
scalar equations. In the equations below, we break the conservation of momentum equation into  and  components.

In the subscripts for the velocities, we label the particle (  or ), the pre or post collision state (  or ), and the component (  or 
). This triple subscript can make things a bit crowded, but as long as you are methodical about labeling and reading these

subscripts it is fairly straightforward. To help ease interpretation, it's recommended that you follow a consistent ordering in the
subscripts, labeling body, then pre/post collision, then direction.

To supplement the conservation of momentum equations, we will again need to determine the type of collision, classifying the
collision as inelastic (where the two particles stick together after impact) or elastic or semi-elastic (where the particles bounce off
of one another).

Inelastic Collisions: 
In the case of inelastic collisions, the bodies will have the same final velocity as a consequence of sticking together. Rolling this
relationship into the above conservation of momentum equations, we wind up with the following equations. These modified
equations are usually enough to solve for the unknowns in the equations.

Elastic and Semi-Elastic Collisions: 
Unlike the inelastic collisions, elastic and semi-elastic collisions will have separate velocities for each of the bodies post-collision.
With each body having separate  and  components, this represents four unknown variables. Assuming we know all starting
conditions, we will need four separate equations to solve for all unknowns.

Unlike the conservation of momentum equation, the conservation of energy equation we would use for elastic collisions is not a
vector equation and cannot be broken down into components. Instead we will need to look to the coefficient of restitution, and set it
equal to 1 for elastic collisions.

To solve these problems, we will first need to set up a specific set of coordinate axes. These axes will be the tangential direction
(along the plane of the collision) and the normal direction (perpendicular to the plane of the collision). An example of these
directions is shown in the figure below.

  +   =   +  mA v ⃗ A,f mB v ⃗ B,f mA v ⃗ A,i mB v ⃗ B,i (10.4.1)

x y
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Figure : In a 2-D collision, it is important to identify the normal and tangential directions. The tangential direction will
always be along the plane of impact while the normal direction will be perpendicular to the plane of contact.

In examining the figure above, we can see something special about the tangential direction in that there are no forces on either body
in this direction. With no forces, there is no impulse, and with no impulse there is no change in momentum for either particle
individually in the tangential direction. This means that velocity is conserved for each body in the tangential direction on its own.
Adding to that, momentum as a whole is conserved in the normal direction and the coefficient of restitution equation can be applied
to the normal direction and we have the four equations we need to solve most problems.

To use the above equations, we will need to break all known velocities down into  and  components, then simply plug those
values in and solve the above equations. In the end we may also need to convert the found  and  velocity components into  and 

 components or magnitudes and directions.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/iugmHb5fLMA.

10.4.1

=vA,f,t vA,i,t (10.4.6)

=vB,f,t vB,i,t (10.4.7)

  +   =   +  mA vA,f,n mB vB,f,n mA vA,i,n mB vB,i,n (10.4.8)

ϵ = −
−vA,f,n vB,f,n

+vA,i,n vB,i,n
(10.4.9)
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Two cars collide at an intersection as shown below. The cars become entangled with one another, sticking together after the
impact. Based on the information given below on the initial velocities and assuming both cars slide away from the crash at the
30-degree angle as shown, what must the initial velocity of car B have been before the impact?

Figure : problem diagram for Example . Two cars of different masses travel towards each other at right angles,
colliding and becoming stuck together.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/RBegCRhcGQc.

Two hockey pucks collide obliquely while sliding on a smooth surface, as shown below. Assume the coefficient of restitution is
0.7 and time of impact is 0.001s.

What is the final speed of each puck?
What is the average force exerted on each puck during the impact?

Example 10.4.1

10.4.2 10.4.1
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Figure : problem diagram for Example . Two hockey pucks of different masses but the same radius move towards
each other, their centers of mass offset by a distance equal to the radius.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/mRPjLk8RxQw.

This page titled 10.4: Two-Dimensional Particle Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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10.5: Steady-Flow Devices
A steady-flow device is any device that will have a continuous flow of material through it. Some examples of steady-flow devices
include pipes, nozzles, diffusers, and pumps. Generally, the material flowing through the device is a gas or liquid, and if the device
in any way changes the velocity of the fluid then that fluid will exert a force on the steady flow device in return.

Figure : The nozzle on the fire hose is an example of a steady-flow device. Because the nozzle changes the velocity of the
water as it exits the hose, it will take a force to hold the nozzle in place.

In order to determine the forces at play on a steady-flow device, we will start with our impulse-momentum equation.

Because this is a continuous process, it doesn't really make sense to have initial and final velocities. Instead, we will have inlet and
outlet velocities. Also, the mass will need to be changed to the mass flow rate (the mass entering or leaving the device per unit
time) to deal with the continuous-flow nature of the system.

Figure : The mass flow rate is a more appropriate measure for steady-flow devices than standard mass.

Dividing our initial impulse-momentum equation by time on both sides will give us the desired mass flow rate on the right, while
the time on the left will cancel out the time component of the impulse.

Simplifying this equation, we will arrive at our final equation, which relates the force our steady-flow device exerts on the fluid to
the mass flow rates and velocities at the inlet and outlet. The force the fluid exerts on the device would simply be equal and
opposite to the force below.

One final note is that these equations are vector equations. If the device is changing the direction of the flow of a fluid you will
need to break the force and velocities into  and  components and split the above equation into  and  components.

Finding Mass Flow Rate: 

If the mass flow rate in or out of your device is not given directly, you may need to find those values. First we can use a simple
identity: we know the mass flow rate will be equal to the density of the fluid  times the volumetric flow rate. Furthermore, the
volumetric flow rate can be related to the geometry of the device, in that it will be equal to the average velocity of the fluid at the
inlet or outlet times the cross-sectional area at the inlet or outlet. Putting this all together, we arrive at the following formula.

10.5.1

= m −mJ ⃗  v ⃗ f v ⃗ i (10.5.1)

10.5.2
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/R8A35UeoNyE.

A firefighter supports a hose as shown below. The hose has a volumetric flow rate of 60 gal/min and the nozzle reduces in
diameter from 4 cm to 2 cm. What force will the firefighter have to exert, in Newtons, to keep the hose in place?

Figure : A firefighter supporting the nozzle of a hose. Photo by Macomb Paynes, CC BY-NC-SA 2.0.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/rl4A1N_BNGA.

= ρ = ρ Aṁ V̇ v ⃗  (10.5.4)
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A 90-degree elbow joint redirects the flow along a pipe of diameter 3 cm. If water (density=1000 kg/m ) is traveling through
the pipe with an average speed of 5 m/s, what is the magnitude and direction of the force the water exerts on the elbow joint?

Figure : problem diagram for Example . An inverted-L-shaped assembly of two pipe segments connected by an
elbow joint has water entering through the bottom left opening and leaving through the upper right opening.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/znKq2quYMWk.

This page titled 10.5: Steady-Flow Devices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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10.6: Chapter 10 Homework Problems

A jackhammer exerts the impulse shown below on the 1.5-kilogram bit to drive it towards the ground. If the bit starts at rest,
what will the expected velocity of the bit be at the end of the impulse?

Figure : problem diagram for Exercise . Graph of the force exerted by the jackhammer on its bit as a function of
time.

Solution

A 0.05-lb arrow traveling at 350 ft/s impacts a 0.4-lb apple on the top of a post that is 3 feet tall. If the arrow becomes lodged
in the apple, how far would we expect the apple to travel  before hitting the ground?

Figure : problem diagram for Exercise . An arrow is about to hit an apple; the two will fall together off the pole
where the apple is balanced.

Solution

A basketball impacts a metal surface as shown below. If the initial velocity of the basketball was 3 ft/s straight down and the
coefficient of restitution is 0.85, what is the expected speed and direction  of the ball after the impact?

Exercise 10.6.1

10.6.1 10.6.1

v= 90 m/s

Exercise 10.6.2

(d)

10.6.2 10.6.2

d = 16.8 ft

Exercise 10.6.3

(θ)
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Figure : problem diagram for Exercise . A basketball falls onto a metal surface tilted at 25° from the horizontal,
bouncing off at some speed at an angle of  from the horizontal.

Solution

Puck A, traveling with an initial velocity of 5 m/s, strikes the stationary Puck B. Assuming the collision is elastic, what will the
velocity of each puck be immediately after the collision?

Figure : problem diagram for Exercise . Puck A moves towards the left, striking the upper right corner of Puck B
and creating a plane of contact that translates to a tangential axis 45° from the horizontal.

Solution

A jet engine with a mass of 700 kg and an air mass flow rate of 50 kg/s is mounted to a stand as shown below (a set of legs on
each side, only one half shown). Based on the input and output velocities shown below, determine the thrust force of the engine
and the forces in stand members , , and . Be sure to indicate if each member is in tension or compression.

10.6.3 10.6.3
θ

v= 2.64 ft, θ = 36.25°

Exercise 10.6.4

10.6.4 10.6.4

= [−3.34, 1.67]m/sv ⃗ A,f

= [−3.34, −3.34]m/sv ⃗ B,f

Exercise 10.6.5

AB AD CD
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Figure : problem diagram for Exercise . A jet engine facing towards the left is mounted on a stand consisting of 4
legs, two on the side of the engine facing the viewer and two on the opposite side, with a single diagonal member connecting
the legs within each set.

Solution

This page titled 10.6: Chapter 10 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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11.1: Fixed-Axis Rotation in Rigid Bodies
When moving from particle kinematics to rigid body kinematics, we add the rotation of a body into the motion analysis process.
Some bodies will translate and rotate at the same time, but many engineered systems have components that simply rotate about
some fixed axis. We will start our examination of rigid body kinematics by examining these fixed-axis rotation problems, where
rotation is the only motion we need to worry about.

Figure : The flywheel on this antique motor is a good example of fixed axis rotation.

Figure : The rotating x-ray tube within the gantry of this CT machine is another example of fixed axis rotation. Image by
Thirteen of Clubs, CC-BY-SA 2.0.

Angular Position, Velocity, and Acceleration: 
Just as with translational motion, we will have angular positions which we can take the derivative of to find angular velocities,
which we can again take the derivative of to find angular accelerations. Since we can only have a single axis of rotation in two-
dimensional problems (rotating about the -axis, with counterclockwise rotations being positive, and clockwise rotations being
negative) the equations will mirror the one-dimensional equations used in particle kinematics.

Also as with one-dimensional translational motion, we can use integration to move in the opposite direction (just remember your
constants of integration).

If we have constant angular accelerations, we can also use the following formulas adapted from one-dimensional motion.

11.1.1

11.1.2

z

Angular Position:

Angular Velocity:

Angular Acceleration:

θ(t)

ω(t) = =
dθ

dt
θ̇

α(t) = = =
dω

dt

θd
2

dt2
θ̈

(11.1.1)

(11.1.2)

(11.1.3)

Acceleration:

Velocity:

Position:

α(t)

ω(t) = ∫ α(t)dt

θ(t) = ∫ ω(t)dt = ∫ ∫ α(t)dt dt

(11.1.4)

(11.1.5)

(11.1.6)
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Velocity and Acceleration of a Point on a Rotating Body: 

With fixed-axis rotation, there is a single point on a body that does not move; however, all other points on this body will have some
velocity and some acceleration due to the rotation of the body itself.

Figure : The diagram above shows a point P on a body rotating about fixed axis O. Point P is a constant distance  away
from the fixed point O. We will adapt the polar kinematics equations to find the velocity and acceleration of point P at any given
instant.

To determine the velocities and accelerations of these points, we will adapt the equations we used for polar coordinates. As a
reminder, these equations were as follows:

To simplify the above equations, we can note that for a rigid body, the point P never gets any closer or further away from the fixed
center point O. This means that the distance  never changes, and the  and  terms in the above equations are zero. Putting this to
work, we can simplify the above equations into the equations below.

These equations allow us to find the velocity and acceleration of any point on a body rotating about a fixed axis, given that we
know the angular velocity of the body \((\dot{\theta)\), the angular acceleration of the body , and the distance from the point to
the axis of rotation .

Acceleration:

Velocity:

Position:

Without time:

α(t) = α

ω(t) = αt+ω0

θ(t) = α + t+
1

2
t

2
ω0 θ0

− = 2α(θ− )ω
2

ω2
0 θ0

(11.1.7)

(11.1.8)

(11.1.9)

(11.1.10)

11.1.3 r

Velocity:

Acceleration:

v= +rṙûr θ̇ ûθ

a = ( −r ) +(2 +r )r̈ θ̇
2
ûr ṙ θ̇ θ̈ ûθ

(11.1.11)

(11.1.12)

r ṙ r̈

Velocity:

Acceleration:

v= rθ̇ ûθ

a = (−r ) +(r )θ̇
2
ûr θ̈ ûθ

(11.1.13)

(11.1.14)

( )θ̈

(r)
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/X02-jN5cwF4.

A flywheel rotates on a fixed axle in a steam engine. The flywheel is rotating at a rate of 600 rpm before a brake begins
decelerating the flywheel at a constant rate of 30 rad/s . What is the time required to bring the flywheel to a complete stop?
How many rotations does the flywheel go through while decelerating?

Figure : A steam engine's flywheel rotates on a fixed axle.

Solution

12.1 Fixed Axis Rotation 12.1 Fixed Axis Rotation - Video Lecture- Video Lecture……

Example 11.1.1
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/z1S9O0XFkDE.

A hard drive platter 8 cm in diameter is rotating at a constant rate of 3600 rpm. What is the velocity of a point on the outer
edge of the platter? What is the acceleration experienced by a point on the edge of the platter?

Figure : A hard drive platter rotates with its center fixed in place.

Solution

WP11 WP11 1 1 MRC1 1 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/n4OixdyqqoU.

This page titled 11.1: Fixed-Axis Rotation in Rigid Bodies is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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11.2: Belt- and Gear-Driven Systems
Belt-and-pulley systems, along with gear-driven systems, represent the common ways that engineers transfer rotational motion and
torque from one shaft to another shaft. Belts offer flexibility in that the shafts do not need to be right next to one another, and gears
are more commonly used in high-load applications.

Figure : Belts and pulleys are often used to transmit motion and torque from one shaft to another.

Figure : Gears are another common way of transmitting motion and torque from one shaft to another shaft.

Position, Velocity, and Acceleration in Belt-Driven Systems 
The diagram below shows a simple belt-driven system. Pulley A and Pulley B each have their own radius, and are connected via a
belt that we will assume is not slipping relative to the pulleys. Each pulley is undergoing fixed axis rotation and will therefore
follow those kinematic rules separately; however, the motion of the belt can be used to relate the motion of the two pulleys.

Figure : The diagram above shows a simple belt driven system connecting pulley A and pulley B.

As a constraint, we can assume the speed of the pulley will be uniform throughout the whole loop at any one time. If this was not
true, the belt would be bunching up in some locations and stretching out in other areas. If the belt isn't slipping, the speed of the
belt will be the same as the speed of the edge of each of the two pulleys. Setting these two speeds equal to one another and working
backwards to relate them to angular velocities, we wind up with the middle equation below. Taking the integral or derivative allows
us to also relate angular displacements or angular accelerations with similar equations.

If we have a more complex series of belts and pulleys, we will analyze the system one step at at time. This will include pulleys
connected via belts as we had above, as well as pulleys connected via a shaft as shown with pulleys B and C in the diagram below.
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11.2.2

11.2.3

Angular Displacements:

Angular Velocities:

Angular Accelerations:

(Δ ) = (Δ )rA θA rB θB
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Figure : The diagram above shows a multi-stage belt driven system connecting pulley A and pulley D. Pulleys A and B are
connected via a belt, then B and C are on the same shaft, then C and D are connected via a belt.

With pulleys on the same shaft, the angular displacements, the angular velocities, and the angular accelerations will all be the same.

If we know the angular displacement, angular velocity, or angular acceleration of pulley A, we could find the angular displacement,
angular velocity, or angular acceleration of pulley D by moving one interaction at a time (finding the motion of pulley B, then C,
then D).

Position, Velocity, and Acceleration in Gear Systems: 
The diagram below shows a simple gear system. Gear A and Gear B each have their own radius, and are interacting at their point of
contact. Each gear is undergoing fixed-axis rotation and will therefore follow those kinematic rules separately; however, the motion
of the teeth at the point of contact can be used to relate the motion of one gear to the next.

Figure : The diagram shows a simple gear system with gears A and B interacting.

As a constraint, we can assume that the speed of the teeth at the point of contact will be the same. If this were not true, the teeth of
one gear would be passing through the teeth of the other gear. Setting these these two speeds equal to one another and working
backwards to relate the angular velocities, we find the second equation below. Taking the integral or derivative allows us to also
relate the angular displacements or angular accelerations with similar equations.

You will notice that the equations above match the equations we had for belt-driven systems, except for the minus sign on the right
side of each equation. This is because meshed gears rotate in opposite directions (if one gear rotates clockwise, the other will rotate
counterclockwise), while pulleys in belt-driven systems always rotate in the same direction.

Also similar to belt driven systems, we can have compound gear trains with three or more gears similar to the figure below. In these
scenarios, we will also likely have gears that are connected via a shaft like the blue and yellow gears shown below. In such
situations, the gears on the same shaft will have matching angular displacements, angular velocities, and angular accelerations. As

11.2.4

Δ = Δ  ; =  ; =θB θC ωB ωB αB αC (11.2.4)

11.2.5

Angular Displacements:

Angular Velocities:

Angular Accelerations:

(Δ ) = − (Δ )rA θA rB θB

= −rAωA rBωB

= −rAαA rBαB
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with belt driven systems, you simply need to take the gear train one step at a time, applying the right set of equations to match each
step in the interaction.

Figure : The animated diagram above shows a compound gear train. The red and blue gears interact via meshing teeth, then
the blue and yellow gears are on the same shaft, then finally the yellow and green gears interact via meshing teeth.

A concept that is commonly used in gear trains that is not commonly used in belt driven systems is the concept of the gear ratio.
For any gear train, the gear ratio is defined as the angular speed of the input divided by the angular speed of the output. Based on
the equations above, we can also prove that the ratio of angular displacements or angular accelerations will similarly be equal to the
gear ratio. However, the gear ratio is always defined as a positive number, so you will still need to use intuition to determine the
direction of output.

In a simple two-gear system, the gear ratio will be equal to the radius of the output gear divided by the radius of the input gear, or
the number of teeth on the output gear divided by the number of teeth on the input gear (since the number of teeth will be directly
proportional to the radius). In compound gear trains this simple calculation given below will not work, but if you are given the gear
ratio for a compound gear train, you can still apply the equations above.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/6AoVrO5s7ME.

If the input pulley A as shown below is rotating at a rate of 10 rad/s, what is the speed of the output pulley at D? How many
rotations does D go through in the time it takes for A to make one full rotation?

11.2.6

Gear Ratio = = =
ωinput

ωoutput

Δθinput

Δθoutput

αinput

αoutput

(11.2.8)

Gear Ratio = = =
ωinput

ωoutput

routput
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Noutput
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Figure : problem diagram for Example . Pulleys A and B are connected by one belt; pulley C, which is on the
same shaft as B, is connected to pulley D by a second belt.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/IxhXp7eBx3k.

A car is moving at 40 ft/s on 18-inch-diameter wheels. What is the angular velocity of the wheels on the car? If the car is in
third gear with a gear ratio of 4.89:1, what is the angular velocity of the engine in rotations per minute? (Hint: the engine is the
input to the gear train and the wheels are the output of the gear train.)

Figure : A police car driving on a highway.

Solution

11.2.7 11.2.1
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/-2Gta-grqoI.

This page titled 11.2: Belt- and Gear-Driven Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

WP11 2 2 MRCWP11 2 2 MRC

11.2.3 11.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/54752?pdf
https://youtu.be/-2Gta-grqoI
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/11%3A_Rigid_Body_Kinematics/11.2%3A_Belt-_and_Gear-Driven_Systems
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=-2Gta-grqoI
https://www.youtube.com/watch?v=-2Gta-grqoI


11.3.1 https://eng.libretexts.org/@go/page/54753

11.3: Absolute Motion Analysis
Absolute motion analysis is one method used to analyze bodies undergoing general planar motion. General planar motion is
motion where bodies can both translate and rotate at the same time. Besides absolute motion analysis, the alternative is relative
motion analysis. Either method can be used for any general planar motion problem, but one method may be significantly easier to
apply for a given situation.

Absolute motion analysis will require calculus, and is generally faster for simple problems and problems where only the velocities
(and not accelerations) are required. Relative motion analysis will not require calculus, but does necessitate using multiple
coordinate systems; it is generally easier to use for more complex problems and problems where velocities and accelerations are
being analyzed.

Utilizing Absolute Motion Analysis: 

To start our discussion on absolute motion analysis, we are going to imagine a simple robotic arm such as the one below. In this
arm, we have two arm sections of fixed length with motors causing rotations at joint A and joint B.

Figure : This robotic arm has a fixed base at A, and two fixed length arm sections (AB and BC) that are controlled via
motors at joints A and B. The end effector of the robotic arm is at C.

The first step in absolute motion analysis is come up with a set of equations describing the position of some point of interest. In this
case we will be looking at the position of the end effector of the arm at point C, and we will write an equation for the  position and
the  position of this point with respect to the fixed origin point at A. In these equations, anything that is a constant (such as the
length of the arm pieces) can be put in as a number, but anything that will change, such as angles  and , will need to remain as
variables in these equations even if they are known at the moment. Using the values in the diagram, we would wind up with the
following two position equations.

To find the velocity of point C in the  and  directions, we simply need to take the derivatives of the position equations. The
velocity equations for our robotic arm are below.

To find the acceleration of point C in the  and  directions, we simply need to take the derivatives of the velocity equations. The
acceleration equations for our robotic arm in the  and  directions are shown below.

11.3.1

x

y

θ ϕ

x-position:

y-position:

= 2 cos(θ) +1.5 cos(ϕ)xC

= 2 sin(θ) +1.5 sin(ϕ)yC

(11.3.1)

(11.3.2)

x y

x-velocity:

y-velocity:

= −2 sin(θ)  −1.5 sin(ϕ) vx C θ̇ ϕ̇

= 2 cos(θ)  +1.5 cos(ϕ) vy C θ̇ ϕ̇

(11.3.3)

(11.3.4)

x y
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Once we have the velocity and acceleration equations, we can start solving for any unknowns. If we have known angular velocities
and accelerations ( , , , and ) we can plug those in to find the velocity and acceleration vectors for the end effector. In other
instances, we may known the desired motion of the end effector ( , , , and ) and will have to plug those values into
the equations to solve for unknowns such as  and so on.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/y1Pq2VP3qas.

The robotic arm shown below has a fixed orange base at A and fixed-length members AB and BC. Motors at A and B allow for
rotational motion at the joints. Based on the angular velocities and accelerations shown at each joint, determine the velocity
and the acceleration of the end effector at C.

Figure : problem diagram for Example . A robotic arm with two segments has motors at its joints, rotating at
known velocities and accelerations.

Solution

θ̇ θ̈ ϕ̇ ϕ̈

vxC vyC axC ayC

θ̇
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/ZBj17t8mhZc.

The robotic arm from the previous problem is in the configuration shown below. Assume that  is currently 30 degrees and that
point C currently lies along the  axis. If we want the end effector at C to travel 1 ft/s in the negative -direction, what should
the angular velocities be at joints A and B?

Figure : problem diagram for Example . A two-segmented robotic arm has an effector on its free end moving at a
known speed, as a result of the rotation of the motors at the two joints.

Solution

WP11 3 1 MRCWP11 3 1 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/O5mtTTpK1RQ.

A ladder is propped up against a wall as shown below. If the base of the ladder is sliding out at a speed of 2 m/s, what is the
speed of the top of the ladder?

Figure : problem diagram for Example . A ladder propped against a wall is falling, as its foot slides away from the
wall.

Solution

WP11 3 2 MRCWP11 3 2 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/fOfEaFUiDZI.

The crank-rocker mechanism as shown below consists of a crank with a radius of 0.5 meters rotating about its fixed center at
C, at a constant rate of 2 rad/s clockwise. Rocker AB is fixed at its base at A and connects to point B along the edge of the
crank. The pin at point B can slide along a frictionless slot in AB. In the current state, what is the angular velocity of rocker
AB?

Figure : problem diagram for Example . A circular side view of a rotating crank with a pin in one edge. The pin
moves through a slot at one end of a rocker bar, whose other end is fixed in place.

Solution

WP11 3 3 MRCWP11 3 3 MRC
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/DydbOzigdpU.

This page titled 11.3: Absolute Motion Analysis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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11.4: Relative Motion Analysis
Relative motion analysis is one method used to analyze bodies undergoing general planar motion. General planar motion is motion where
bodies can both translate and rotate at the same time. Besides relative motion analysis, the alternative is absolute motion analysis. Either
method can be used for any general planar motion problem, however one method may be significantly easier to apply in certain situations.

Absolute motion analysis will require calculus and is generally faster for simple problems and problems where only the velocities (and not
accelerations) are required. Relative motion analysis will not require calculus, but does necessitate using multiple coordinate systems and is
generally easier to use for more complex problems and problems where velocities and accelerations are being analyzed.

Utilizing Relative Motion Analysis 

To start our discussion on relative motion analysis, we are going to imagine a simple robotic arm such as the one below. In this arm, we have
two arm sections of fixed length, with motors causing rotations at joint A and joint B.

Figure : This robotic arm has a fixed base at A, and two fixed length arm sections (AB and BC) that are controlled via motors at joints
A and B. The end effector of the robotic arm is at C.

The first step in relative motion analysis is to break the motion down into simple steps and assign a coordinate system (with  and 
directions) to each step in the chain of motion. We will always start at a fixed point and move step by step from there. In the case of our
robotic arm, Joint A is the only point that will not be moving so we start there; then we have two cases of rotation without extension as we
move from A to B, then B to C.

Since there are two steps to the motion, there will be two coordinate systems. The first coordinate system will be attached to member AB,
with the  direction going from point A to point B. The  direction will then be ninety degrees counterclockwise from the  direction. The
second coordinate system will be attached to member BC, with the  direction going from point B to point C. Again, the  direction is
ninety degrees counterclockwise from the  direction. At this point it is usually good to identify the angles of each of the  and  directions
with respect to ground. Below is a picture of the robotic arm with both coordinate systems drawn in.

Figure : Two coordinate systems are used in the relative motion analysis of this robotic arm. The first coordinate system is attached to
member AB while the second is attached to member BC. The  direction will always line up with the two endpoints of the member, while
the  direction will always be 90° counterclockwise from the corresponding  direction.

For relative motion analysis, we can identify the velocity or acceleration of the end point of the arm (C) with respect to the ground (A) by
finding the velocity acceleration of B with respect to A and adding the velocity or acceleration of C with respect to B, just as we did with
particles.

11.4.1

r θ

r θ r

r θ

r r θ

11.4.2
r

θ r

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/54756?pdf
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/11%3A_Rigid_Body_Kinematics/11.4%3A_Relative_Motion_Analysis


11.4.2 https://eng.libretexts.org/@go/page/54756

The relative motion analysis equations above are for a two-part motion (as there are two sections to the arm in our example), but we can
easily expand the above equation into three, four, or even more pieces for more complex mechanisms by adding more steps to the left side
of our equation.

To use the above equations, we will need to plug in the information we know. Plugging in velocities or accelerations that are given as part of
the problem for any particular points is a good place to start. If the velocity of points B or C were given, for example, we would plug that in
for  or  respectively. Do remember that point A is our fixed ground point, so  is the velocity of point C relative to the ground
while  is the velocity of point C with respect to point B. If any point is fixed (other than our original ground point, which will always
be fixed), we can also plug in zeros for both velocity and acceleration of that point. Remember that this equation is a vector equation, so
these velocities have both a magnitude and a direction.

To take into account rotation or extension of any individual pieces, we will need to look back to our kinematics equations for polar
coordinator systems. Below are the equations we had for velocity and acceleration.

In the above equations,  represents the length of the respective arm piece (the length of member AB or BC),  represents the rate at which
that length is increasing, and  represents the rate at which that rate is increasing. The  term represents current angle of the arm piece,  is
the angular velocity of that arm piece, and  is the angular acceleration of that arm piece. The  and  directions are the  and 
directions that are attached to that particular section of the arm (in our earlier drawing,  and  were attached to member AB and  and

 were attached to member BC).

Though it's certainly possible to have a mechanism that is rotating and extending at the same time, we will often have either just simple
rotation, or just simple extension along a fixed direction. With simple rotation, the  and  terms are zero, and our equations reduce down
to the following.

If we have simple extension, where the length of the piece is changing but there is no rotation, the  and  terms would be zero and our
original equations would reduce down to the following.

If we use the appropriate set of equations for the type of motion in each step and plug in known quantities for angular velocities, angular
accelerations, and rates or extension for each piece, we can add these pieces to our relative motion analysis equation from earlier. Again,
these are vectors so be sure to indicate both the magnitudes and directions when we put them into the equation.

Once we have everything in our vector equation, we will break the vector equation into  and  components in order to solve for any
unknowns. Simply find the angles or each of the  and  directions using your diagram and then use sines and cosines to break the
individual vectors down into  and  components. Once you have everything in component form, you should be able to solve for any
unknowns in your equations. As a note, it is often necessary to start with the velocity equations and solve for some unknowns there before
moving on to the acceleration equations.

Alternate Notation for Rigid Body Relative Motion 
In some cases, we want to analyze multiple points on the same or several rigid bodies. Another notation used for this is:

In this notation, A and B are two points on the same rigid body. When we use only one subscript, that indicates the
position/velocity/acceleration of that point with respect to the fixed coordinate system. Because the body is rigid, the two points will not
change the distance between them, but the position vector between them can change orientation (which is where the relative velocity

Velocity:

Acceleration:

= +v ⃗ C/A v ⃗ B/A v ⃗ C/B

= +a⃗ C/A a⃗ B/A a⃗ B/C

(11.4.1)

(11.4.2)
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between the two points comes from).  is the angular velocity of that rigid body (analogous to ), and  is the angular acceleration of that
rigid body (analogous to ).

For planar motion, where the angular velocity vector (out of plane) is always perpendicular to the position vector (in the plane), the
acceleration can be simplified to:

Figure , this robotic arm has a fixed base at A, and two fixed length arm sections (AB and BC) that are controlled via motors at joints
A and B. The end effector of the robotic arm is at C.

If we consider the same robotic arm, we can translate our previous notation to the new rigid body notation:

All vectors will be defined with respect to the  and  coordinates in the coordinate system shown, rather than the radial and theta directions
as above.

If we want to find the velocity and acceleration of the end point, C, knowing the angular velocities and accelerations, we will find the
following relationships:

Video lecture covering this chapter, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/6qAY9iB9xi0.

ω⃗  θ̇ α⃗ 

θ̈

Acceleration: = + × −a⃗ B a⃗ A α⃗  r ⃗ B/A ω2r ⃗ B/A (11.4.12)

11.4.1

θ̇ k̂

ϕ̇k̂

θ̈ k̂

ϕ̈k̂

= ω⃗ AB

= ω⃗ BC

= α⃗ AB

= α⃗ BC

(11.4.13)

(11.4.14)

(11.4.15)

(11.4.16)

x y

Velocity at point B:

Velocity at point C:

Acceleration at point B:

Acceleration at point C:

= + ×v ⃗ B v ⃗ A ω⃗  r ⃗ B/A

= + × = + × + ×v ⃗ C v ⃗ B ω⃗  r ⃗ C/B v ⃗ A ω⃗  r ⃗ B/A ω⃗  r ⃗ C/B

= + × −a⃗ B a⃗ A α⃗  r ⃗ B/A ω2r ⃗ B/A

= + × − = + × − + × −a⃗ C a⃗ B α⃗  r ⃗ C/B ω2r ⃗ C/B a⃗ A α⃗  r ⃗ B/A ω2r ⃗ B/A α⃗  r ⃗ C/B ω2r ⃗ C/B

(11.4.17)

(11.4.18)

(11.4.19)

(11.4.20)

12.5 Relative Motion Analysis Scalar - Vide12.5 Relative Motion Analysis Scalar - Vide……

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/54756?pdf
https://youtu.be/6qAY9iB9xi0
https://www.youtube.com/watch?v=6qAY9iB9xi0
https://www.youtube.com/watch?v=6qAY9iB9xi0


11.4.4 https://eng.libretexts.org/@go/page/54756

The robotic arm shown below has a fixed orange base at A and fixed length members AB and BC. Motors at A and B allow for
rotational motion at the joints. Based on the angular velocities and accelerations shown at each joint, determine the velocity and the
acceleration of the end effector at C.

Figure : problem diagram for Example . A robotic arm with two segments has motors at its joints, rotating at known
velocities and accelerations.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/fOjS1O2-3LQ.

The robotic arm from the previous problem is in the configuration shown below. Assume that  is currently 30 degrees and that point C
currently lies along the  axis. If we want the end effector at C to travel 1 ft/s in the negative -direction, what should the angular
velocities be at joints A and B?

Figure : problem diagram for Example . A two-segmented robotic arm has an effector on its free end moving at a known
speed, as a result of the rotation of the motors at the two joints.

Solution

Example 11.4.1

11.4.4 11.4.1

WP 11.4.1-JPMWP 11.4.1-JPM

11.4.2 11.4.1

Example 11.4.2

θ

x x
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/esp_gz8VKRs.

A ladder is propped up against a wall as shown below. If the base of the ladder is sliding out at a speed of 2 m/s, what is the speed of the
top of the ladder?

Figure : problem diagram for Example . A ladder propped against a wall is falling, as its foot slides away from the wall.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/SzAq3HD7qJY.

WP 11.4.2-JPMWP 11.4.2-JPM

11.4.3 11.4.2

Example 11.4.3

11.4.6 11.4.3
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The crank-rocker mechanism as shown below consists of a crank with a radius of 0.5 meters rotating about its fixed center at C, at a
constant rate of 2 rad/s clockwise. Rocker AB is fixed at its base at A and connects to point B along the edge of the crank. The pin at
point B can slide along a frictionless slot in AB. In its current state, what is the angular velocity of rocker AB?

Figure : problem diagram for Example . A circular side view of a rotating crank with a pin in one edge. The pin moves
through a slot at one end of a rocker bar, whose other end is fixed in place.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Exys74nj02I.

This page titled 11.4: Relative Motion Analysis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

Example 11.4.4

11.4.7 11.4.4

WP 11.4.4-JPMWP 11.4.4-JPM

11.4.5 11.4.4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://eng.libretexts.org/@go/page/54756?pdf
https://youtu.be/Exys74nj02I
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_Map_(Moore_et_al.)/11%3A_Rigid_Body_Kinematics/11.4%3A_Relative_Motion_Analysis
https://creativecommons.org/licenses/by-sa/4.0
http://www.personal.psu.edu/jpm46/
http://mechanicsmap.psu.edu/
http://mechanicsmap.psu.edu/
https://www.youtube.com/watch?v=Exys74nj02I
https://www.youtube.com/watch?v=Exys74nj02I


11.5.1 https://eng.libretexts.org/@go/page/54768

11.5: Rotating Frame Analysis
Rotating frame analysis is a specialized part of relative motion analysis. It is typically performed in Cartesian ( - ) coordinates
for rigid bodies. In the previous section, rotating frames in polar coordinates were used to solve problems with formulae similar to
those in particle kinematics. We will adopt a slightly different notation that is specialized to rigid bodies. These formulae are the
most general planar kinematics formulae - that is, they can always be used, and will provide the correct answer. However, they are
unnecessarily complicated for many types of motion, such as pure rotation.

Rotating frame analysis is really important for cases where objects are not pinned to each other. When do you use rotating frames?
When one object is sliding against another object, or two objects are not even in contact, but you want to know something about the
motion relationship between them and/or are given information about the motion relationship between them.

Reference Frames: 

In most of the preceding material, you have worked with the fixed reference frame , and a translating (but not rotating)
reference frame attached to the rigid body at a point , frame .

Figure : A rigid body with a translating (not rotating) reference frame  attached at point , relative to the fixed frame 
 at .

This has given us relative motion equations:

Note that the notation , where  is the fixed frame, can also be written as . Both indicate an absolute position (or velocity
or acceleration) - that is, a value with respect to the fixed frame .

Rotating Frames: 

Now, we will consider a reference frame that is attached to a point on the rigid body and both rotating and translating with the
rigid body. We will introduce some extra terms to account for the rotation of the frame.

Consider a rigid body with frame  at point .  moves and rotates with the body. A bug, , is crawling along the body.

x y

Oxyz

A Axyz

11.5.1 x′y′z′ A
xyz O

Position:

Velocity:

Acceleration:

= +r ⃗ B/O r ⃗ A/O r ⃗ B/A

= + = + ×v ⃗ B/O v ⃗ A/O v ⃗ B/A v ⃗ A/O ω⃗  r ⃗ B/A

= + = + × −a⃗ B/O a⃗ A/O a⃗ B/A a⃗ A/O α⃗  r ⃗ B/A ω2r ⃗ B/A

(11.5.1)

(11.5.2)

(11.5.3)

rB/O O rB
O

x′y′z′ A x′y′z′ B
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Figure : A rigid body with a translating AND rotating reference frame, , attached at point . A bug, , is crawling
along the rigid body, with a velocity relative to the rotating frame. The bug is currently above a sticker, , that is rigidly fixed to
the rigid body.

For an observer sitting at , the bug appears to be crawling away in a straight line. But for an observer sitting at , the bug does
not look like it is moving in a straight line, because the body it is crawling on is also moving (translating and rotating). We would
like to describe the motion of the bug as seen by an observer at . To remind ourselves that we are dealing with a rotating frame
attached to one body, we use capital omega ) to denote the angular velocity of the object that the rotating frame is attached to, and

 for the angular acceleration of the object with the rotating frame attached. Finally, we use brackets and the subscript  to
denote values of velocity or acceleration expressed with respect to the rotating frame.

Recall that vectors have both magnitude and direction. We can express a vector in components with respect to the  and  unit
vectors:

Normally, when we take a time derivative of such an expression, the length of the vector (i.e. the  and  terms) change,
but the unit vectors do not. In the case of the rotating frame, the unit vectors change. Now, they don't change in length - they remain
unit vectors. But they are attached to a rotating body, which means they also rotate. That is, their directions change, and we have to
account for that when deriving velocity and acceleration expressions.

11.5.2 x′y′z′ A B
C

A O

O

Ω

Ω̇ rel

î ĵ

= +r ⃗ B/O rB/O,x î rB/O,y ĵ (11.5.4)

rB/O,x rB/O,y
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Figure : When the reference frame rotates with the rotating rigid body, the unit vectors change with time.

You can see we get small vectors  and  that describe the change in direction of the unit vectors, and the magnitude of that
change is directly related to , the angular velocity of the rigid body and the rotating frame.

When we differentiate the relative position of the bug, , with respect to the rotating frame, , we have:

The new term above describes the motion of the bug due to the rotation of the rigid body (and the  frame), while the familiar
term above describes the motion of the bug as seen by an observer fixed to . Our final expression for the velocity of the bug
with respect to the fixed frame is:

This final expression has the new term, , which describes the motion of the bug as viewed from the rotating frame. You
can note that if the bug is not moving, , and we get the familiar expression from the translating, non-rotating frames.
Thus, this expression is the most general relative velocity expression.

We can similarly derive an acceleration equation by differentiating the above velocity equation. The final expression is:

11.5.3

di′̂ dj′̂

Ω

= Ω × = Ω
di′̂

dt
k̂ i′̂ j′̂ (11.5.5)

= Ω × = −Ω
dj′̂

dt
k̂ j′̂ i′̂ (11.5.6)

B A

= (   +   )+ ×(   +  )
dr ⃗ B/A

dt
ṙB/A, x′ i′̂ ṙB/A, y ′ j′̂ Ω⃗  rB/A, x′ i′̂ rB/A, y ′j′̂ (11.5.7)

New term:

Same as before:

(   +   ) =ṙB/A, x′ i′̂ ṙB/A, y ′ j′̂ ( )v ⃗ B/A rel

×(   +   ) = ×Ω⃗  rB/A, x′ i′̂ rB/A, y ′ j′̂ Ω⃗  r ⃗ B/A

(11.5.8)

(11.5.9)

x′y′z′

x′y′z′

= + × +(v ⃗ B/O v ⃗ A/O Ω⃗  r ⃗ B/A v ⃗ B/A)rel (11.5.10)

(v ⃗ B/A)rel
( = 0v ⃗ B/A)rel
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Table : Physical correspondences of Equation  components

Motion of rotating frame attached to rigid body:

Coriolis acceleration - interaction of object motion with respect to
rotating frame and motion of rotating frame:

Motion of object with respect to rotating frame:

Note that, for planar (2D) motion:

Again, if the bug is sitting still, both  terms become zero (it is not moving with respect to the rigid body), and we are left with
the same relative motion expression used with translating frames. So, Equation  is the most general form of the relative
acceleration equation and can always be used.

When tackling these problems, there are several important things to remember:

1. You need to pick the correct body to attach the rotating frame to. The correct body will have another body sliding against it. If
the object of interest is pinned to the body you chose, it might not be correct.

2. It is often helpful to align your rotating frame such that you end up with a simplified " " term or terms. For example, line up
the  axis with the direction of movement of the bug, so that  is in the -direction.

3. The components of all terms of any one equation must be computed along the same  and  directions. If the frames are not
aligned, you must pick ONE FRAME and express all terms along that the directions of the ONE FRAME. (You may be able to
switch between frames in different equations, but make sure you are careful with notation!)

4. When you are given information in a problem, pay careful attention to what frame is being referred to.
5. Make sure you include all the terms in the acceleration equation! It's easy to miss one. You should have five terms.

These are some of the most complex problems in planar kinematics, so take your time!

A camera drone, , flies over a car race in a curved trajectory (center ) with a constant ground-speed velocity of 
. At the moment shown, car  is traveling with velocity of  and an acceleration of  as

shown. Assume  = \ 3 m\).

Find the velocity of the car as observed by the camera on drone D at this instant.
Find the acceleration of the car as observed by the camera on drone D at this instant.

= + × + ×( × ) +2 ×( +(a⃗ B/O a⃗ A/O Ω⃗ ˙
r ⃗ B/A Ω⃗  Ω⃗  r ⃗ B/A Ω⃗  v ⃗ B/A)rel a⃗ B/A)rel (11.5.11)

11.5.1 11.5.11

+ × + × ( × )a⃗ A/O Ω⃗ ˙
r ⃗ B/A Ω⃗  Ω⃗  r ⃗ B/A

2 × (Ω⃗  v ⃗ B/A)rel

(a⃗ B/A)rel

×( × ) = −Ω⃗  Ω⃗  r ⃗ B/A Ω2r ⃗ B/A (11.5.12)

rel

11.5.11

rel

x′ (v ⃗ B/A)rel x′

î ĵ

Exercise 11.5.1

D O

= 9 m/svD C = 12 m/svc = 2 m/ac s2

= 7.5 m,  d1 d2
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Figure : problem diagram for Example . A drone tracing a circular path around point  is currently straight to the
right of a car, with the velocity and acceleration vectors of the two vehicles pointing in the same direction.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/nqs7bLBVm3g.

A breathing exercise video graphic (somewhat similar to this one) shows a small circle moving in a constrained circular path
(constant radius 80 cm) at a constant angular velocity of 0.4 rad/s around an expanding and contracting inner circle. The inner
circle expands and contracts sinusoidally, from a minimum radius of 30 cm to a maximum radius of 60 cm. The distance from
the center of the inner circle to a point on the edge of the inner circle can be described by the equation ,
where  is in meters and  is the position of the small circle (zero at the -axis).

Find the velocity and acceleration of point B on the edge of the inner circle as viewed by an observer on the small circle at
point  (see part C of the figure below). °, °

11.5.4 11.5.1 O

Rot Frame WP002Rot Frame WP002

11.5.1 11.5.1

Example 11.5.2

r = 0.45 −0.15 sin(θ)

r θ x

A θ = 45 α = 45
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Figure : problem diagram for Example . A large circular outline rotates at a constant rate, changing the location of
a small circle attached to it, while an inner circle concentric with the outline expands and contracts in radius.

Solution

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/mL0PVJNnOBE.

This page titled 11.5: Rotating Frame Analysis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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11.6: Chapter 11 Homework Problems

You are designing a bench grinder with an operating speed of 3600 rpm.

If you want the grinder to reach its full operating speed in 4 seconds, what must the rate of angular acceleration be in
radians per second squared?
If the grinding wheel has a diameter of 8 inches, what will the speed of the surface of the wheel be?

Figure : A bench grinder.

Solution

A belt-driven system has an input at pulley A, which drives pulley B, which is attached with a solid shaft to pulley C, which
drives pulley D. If the input is rotating at 60 rad/s counterclockwise, determine the angular velocity and direction of rotation
for the output at D.

Figure : problem diagram for Exercise . A four-pulley system in which A and B are attached by a belt, C and D
are attached by another belt, and B and C are mounted on the same shaft.

Solution

 counterclockwise

The piston in a piston and crank mechanism has the velocity and acceleration shown below. Using absolute motion analysis,
determine the current angular velocity and angular acceleration for the crank.

Exercise 11.6.1

11.6.1

α = 94.25  rad
s

v= 125.67 ft/s

Exercise 11.6.2

11.6.2 11.6.2

= 300 ωD
rad
s

Exercise 11.6.3
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Figure : problem diagram for Exercise . A piston descends, causing the crank mounted on a fixed axle below it to
rotate due to the bar that connects the piston and the crank.

Solution

 clockwise

 clockwise

A trapdoor is being opened with a hydraulic cylinder extending at constant rate of 0.7 m/s. If the door is currently at a twenty-
degree angle as shown below, what is the current angular velocity and angular acceleration for the door?

Figure : problem diagram for Exercise . Side view of a trapdoor being raised by the extension of a hydraulic
cylinder that has one end attached to the door and the other fixed to a point on the ground.

Solution

A robotic arm experiences the angular velocities and accelerations shown below. Based on this information, determine the
velocity and the acceleration of the end of the arm in the  and  directions.

11.6.3 11.6.3

ω = 13.33  rads

α = 100.16  rad
s2

Exercise 11.6.4

11.6.4 11.6.4

= 0.896  , = −1.246 θ̇ rad

s
θ̈ rad

s2

Exercise 11.6.5
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Figure : problem diagram for Exercise . A two-member robotic arm attached to a fixed base experiences rotation
from two motors located at the joints.

Solution

This page titled 11.6: Chapter 11 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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12.1: Rigid Body Translation
With rigid bodies, we have to examine moments and at least the possibility of rotation, along with the forces and accelerations we
examined with particles. Some rigid bodies will translate but not rotate (translational systems), some will rotate but not translate
(fixed axis rotation), and some will rotate and translate (general planar motion). Overall, we will start with an examination of
translational systems, then examine fixed axis rotation, then pull everything together for general planar motion.

Figure : The braking car in this picture is an example of a translational system. Though the car experiences a significant
deceleration, it does not experience any significant rotation while it slows down. Public domain image by Sgt. Amber Blanchard.

As the start of our analysis, we will go back to Newton's Second Law. Since this is a rigid body system, we include both the
translational and rotational versions.

As we did with particles, we can break the vector force equation into components, turning the one vector equation into two scalar
equations (in the  and  directions respectively). As for the moment equation, a translational system by definition will have zero
angular acceleration. With the angular acceleration being zero, the sum of the moments must all be equal to zero. This is similar to
statics problems; however, there is one big difference we must take into account. The moments must be taken about the center
of mass of the body. Setting the moments to zero about other points will lead to invalid solutions for any body experiencing an
acceleration. Putting these specifics into action, we wind up with the three base equations of motion below. To solve for unknown
forces or accelerations, we simply draw a free body diagram, put the knowns and unknowns into these equations, and solve for the
unknowns.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/V4Gy-tyHupE.

12.1.1

∑ = m ∗F ⃗  a⃗  (12.1.1)

∑ = I ∗M⃗  α⃗  (12.1.2)

x y

∑ = m ∗Fx ax (12.1.3)

∑ = m ∗Fy ay (12.1.4)

∑ = 0MG (12.1.5)
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A refrigerator is 2.5 feet wide and 6 feet tall, and weighs 80 lbs. The center of mass is 1.25 feet from either side and 2 feet up
from the base. If the refrigerator is on a conveyor belt that is accelerating the fridge at a rate of 1 ft/s , what are the normal
forces at each of the feet?

Figure : problem diagram for Example . A refridgerator of the dimensions described above is on a conveyor belt
that accelerates the fridge to the right at a rate of 1 ft/s .

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/59GRMn_ZvJk.

This page titled 12.1: Rigid Body Translation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore
& Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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12.2: Fixed-Axis Rotation
With rigid bodies, we have to examine moments and at least the possibility of rotation along with the forces and accelerations we
examined with particles. Some rigid bodies will translate but not rotate (translational systems), some will rotate but not translate
(fixed axis rotation), and some will rotate and translate (general planar motion). Here we will examine rigid body rotation about a
fixed axis. As the name would suggest, fixed axis rotation is the analysis of any rigid body that rotates about some axis that does
not move. Many devices rotate about their center, though the objects do not need to rotate about their center point for this analysis
to work.

Figure : The wheel on this pitching machine is an example of fixed axis rotation with the axis of rotation at the center of
mass. Image by Abigor, license CC-BY 2.0.

We will again start with Newton's Second Law. Since this is a rigid body system, we include both the translational and rotational
versions.

By setting up free body diagrams, determining the equations of motion using Newton's Second Law, and solving for the unknowns,
we can find forces based on the accelerations or vice versa.

Balanced Rotation 

If the center of mass of the body is at the axis of rotation, which is known as balanced rotation, then acceleration at that point will
be equal to zero. The pitching machine above is an example of a balanced rotation, and most fixed axis systems will be
intentionally built to be balanced. With the acceleration of the center of mass being zero, the sum of the forces in both the  and 
directions must be also be equal to zero.

In addition to the force equations, we will can also use the moment equations to solve for unknowns. In simple planar motion, this
will be a single moment equation which we take about the axis of rotation or center of mass (remember that they are the same point
in balanced rotation).

Unbalanced Rotation 
When the center of mass is not located on the axis of rotation, the center of mass will be accelerating and therefore forces will be
exerted to cause that acceleration. In perfectly anchored systems these will be forces exerted by the bearings, though these forces
can often be felt as vibrations in real systems.

12.2.1

∑ = m ∗F ⃗  a⃗  (12.2.1)

∑ = I ∗M⃗  α⃗  (12.2.2)

x y

∑ = 0Fx (12.2.3)

∑ = 0Fy (12.2.4)

∑ = ∗ αMO IO (12.2.5)
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Figure : Many video game controllers use motors to rotate the small masses where the center of mass is not at the axis of
rotation. This unbalanced rotation results in forces (felt as vibrations) needed to accelerate the center of mass of the spinning
masses. Image by unknown author under a CC0 license.

The kinematics equations discussed in the previous chapter can be used to determine the acceleration of a point on a rotating body,
that point being the center of mass in this case. After determining those accelerations, they can be put into force equations, most
likely using the  and  directions.

Note that as the body rotates, the direction of the acceleration and the direction of the forces change. Also note that the further the
center of mass is from the axis of rotation, the larger the mass. The larger the angular velocity, the larger these forces will be.

To supplement the force equations, we can use a moment equation about either the axis of rotation or the center of mass, as these
are no longer the same point. Whichever is chosen, just be sure to be consistent in taking the moments and the mass moment of
inertia about the same point.

More information on how to calculate the mass moment of inertia for a body can be found in Appendix 2.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/EGmfwhYbRew.

A hard drive platter 8 cm in diameter accelerates at a constant rate of 150 rad/s . If the hard drive weighs a uniformly
distributed 0.05 kg and we approximate the hard drive as a flat circular disc, what moment does the motor need to exert to
accelerate the drive at this rate?

12.2.2

r θ

∑ = mFr ar (12.2.6)

∑ = mFθ aθ (12.2.7)

∑ = ∗ α or ∑ = ∗ αMO IO MG IG (12.2.8)
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Figure : A picture of a hard drive that emphasizes the flat circular platter.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/grJ8WYsGitw.

The drum in a washing machine can be approximated as a cylinder 0.4 meters in diameter and 0.3 meters in height with a
uniformly distributed mass of 35 kilograms when full. If we wish to achieve an acceleration of 15 rad/s , what torque must the
motor exert at the center of the drum?

Figure : problem diagram for Example . A front-loading washing machine, and an approximation of the machine's
drum as a cylinder rotated about its axis by the motor.

Solution
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/7G7HnwsyLXk.

This page titled 12.2: Fixed-Axis Rotation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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12.3: Rigid-Body General Planar Motion
In general planar motion, bodies are both rotating and translating at the same time. As a result, we will need to relate the forces to
the acceleration of the center of mass of the body as well as relating the moments to the angular accelerations.

Figure : This tire being rolled along the ground is an example of general planar motion. The tire is both translating and
rotating as it is pushed along. Image by Joy Agyepong, CC-BY-SA 4.0.

To analyze a body undergoing general planar motion, we will start by drawing a free body diagram of the body in motion. Be sure
to identify the center of mass, as well as identifying all known and unknown forces, and known and unknown moments acting on
the body. It is also sometimes helpful to label any key dimensions as well as using dashed lines to identify any known accelerations
or angular accelerations.

Next, we move on to identifying the equations of motion. At its core, this means going back to Newton's Second Law. Since this is
a rigid body system, we include both the translational and rotational versions.

As we did with the previous translational systems, we will break the force equation into components, turning the one vector
equation into two scalar equations. Additionally, it's important to always use the center of mass for the accelerations in our force
equations and take the moments and moment of inertia about the center of mass for our moment equation.

Plugging the known forces, moments, and accelerations into the above equations, we can solve for up to three unknowns. If more
than three unknowns exist in the equations, we will sometimes have to go back to kinematics to relate quantities such as
acceleration and angular acceleration.

12.3.1

∑ = m ∗F ⃗  a⃗  (12.3.1)

∑ = I ∗M⃗  α⃗  (12.3.2)

∑ = m ∗Fx ax (12.3.3)

∑ = m ∗Fy ay (12.3.4)

∑ = I ∗ αMCOM (12.3.5)
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/jhVDM7Zw_LM.

A cylinder with a radius of 0.15 m and a mass of 10 kg is placed on a ramp at a 20-degree angle. If the cylinder is released
from rest and rolls without slipping, what is the initial angular acceleration of the cylinder and the time required for the
cylinder to roll 5 meters?

Figure : problem diagram for Example . A uniform cylinder rolls down a ramp that has a 20° incline.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/oQFVVC3SzZ0.

13.3 General Planar Motion - Video Lect13.3 General Planar Motion - Video Lect……
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The cable spool shown below has a weight of 50 lbs and has a moment of inertia of 0.28 slug-ft . Assume the spool rolls
without slipping when we apply a 50-lb tension in the cable.

What is the friction force between the spool and the ground?
What is the acceleration of the center of mass of the spool?

Figure : problem diagram for Example . A cable spool, consisting of a central cylinder the cable wraps around
sandwiched between two larger disks at its bases, is pulled to the right by a tension force on the free end of the cable. Spool
image by Seeweb, CC-BY-SA 2.0.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/RAhLP-kMYaQ.

You are designing a Frisbee launcher to launch a 40-cm-diameter, 0.6 kg Frisbee that can be modeled as flat circular disc. If
you want the Frisbee to have a linear acceleration of 20 m/s  and an angular acceleration of 50 rad/s  as shown below, what
should  and  be?

Example 12.3.2
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Figure : problem diagram for Example . A Frisbee, represented as a circle, accelerates both linearly and angularly
as a result of experiencing two forces applied in the same direction at locations on opposite sides of a diameter.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/DY9B7oU0j7k.

A pickup truck is carrying a 30-kg, 6-meter-long ladder at a 35-degree angle as shown below. The ladder is wedged against the
tailgate at A and makes contact with the roof of the truck at B. The distance from A to B is 2 meters. At what rate of
acceleration would we expect the ladder to start to rotate upwards?

12.3.4 12.3.3
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Figure : problem diagram for Example . A moving pickup truck carries a ladder that leans forward, with its lower
end propped against the tailgate.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/UO5XsDFxQoY.

This page titled 12.3: Rigid-Body General Planar Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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12.4: Multi-Body General Planar Motion
In cases where multiple connected rigid bodies are undergoing some sort of motion, we can extend our analysis of general planar
motion to this multi-body situation. In these cases, which we will call multi-body kinetics problems, we will analyze each body
independently as we did for general planar motion, but we will also need to pay attention to the Newton's Third Law pairs. Each
body will have forces exerted on it by the surrounding bodies, and it will exert equal and opposite forces back through those same
connections.

Figure : These robotic arms are a good example of a multi-body kinetics problem. As one section of the arm accelerates, it
will exert forces on the other arm sections it is connected to. Image by Chris Chesher, CC-BY-NC-SA 2.0.

To analyze a multi-body system, we will start by drawing a free body diagram of each body in motion. Be sure to identify the
center of mass, as well as identifying all known and unknown forces, and known and unknown moments acting on the body. When
drawing forces at connection points, be sure to make the forces equal and opposite on the connected body to satisfy Newton's Third
Law. It is also sometimes helpful to label any key dimensions as well as using dashed lines to identify any known accelerations or
angular accelerations. Often, you will need to solve a kinematics problem using absolute motion analysis or relative motion
analysis in order to determine the accelerations of the centers of mass and the angular accelerations for each body. Make sure all
these accelerations are with respect to ground.

Next we move onto identifying the equations of motion for each body in the system. In two dimensions, we will use the same three
equations we used for general planar motion. Be sure to find the the accelerations of all the centers of masses, find all moments
about the center of mass, and take the mass moments of inertia about the center of mass of each body.

Plugging the known forces, moments, and accelerations into the above equations we can solve for up to three unknowns per body.
If more than three unknowns exist in any one set of equations, you will need to start with an adjacent body. Once unknown forces
are determined on one body, they can become knowns on the connected body, reducing the number of unknowns to solve for.

12.4.1

∑ = m ∗Fx ax (12.4.1)

∑ = m ∗Fy ay (12.4.2)

∑ = ∗ αMG IG (12.4.3)
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/-tAP08srNrU.

A robotic arm has two sections (OA and AB), with section OA having a mass of 10 kg and section AB having a mass of 7 kg.
Treat each section as a slender rod. If we wish to accelerate member AB from a standstill at a rate of 3 rad/s² and keep the left
section stationary, what moments must we exert at joints O and A?

Figure : problem diagram for Example . A robotic arm consists of two segments that are currently horizontal, with
the left end of the left segment being attached to a base and the right segment undergoing angular acceleration.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/zR_uhVM1uH0.

13.4 Multi-Body Kinetics - Video Lecture13.4 Multi-Body Kinetics - Video Lecture……
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This page titled 12.4: Multi-Body General Planar Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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12.5: Chapter 12 Homework Problems

The SUV shown below has an initial velocity of 90 ft/s. It slams on its brakes, coming to a stop over a distance of 300 feet. If
the car has a weight of 3500 lbs and a center of mass as shown below, what are the normal forces at the front wheels? What are
the normal forces at the back wheels?

Figure : problem diagram for Exercise . A car traveling in a straight line applies its brakes, coming to a gradual
stop.

Solution

A ring-shaped space station can be approximated as a thin ring 60 meters in diameter with a mass of 500,000 kg. The space
station has a set of thrusters able to exert equal and opposite forces as shown below. If we want to cause an angular
acceleration of 0.1 rad/s² in the space station, what is the force required from each thruster?

Figure : problem diagram for Exercise . A ring-shaped space station is given the specified angular acceleration
through the firing of two thrusters located on either side of a diameter, pointing in opposite directions.

Solution

Exercise 12.5.1

12.5.1 12.5.1

= 1291.4 lbsFNrear

= 2208.6 lbsFNfront

Exercise 12.5.2

12.5.2 12.5.2

= 750 kNFthruster
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A 50-kg barrel with a diameter of 0.75 meters is placed on a 20-degree slope. Assuming the barrel rolls without slipping, what
will the acceleration of the barrel's center of mass be?

Figure : problem diagram for Exercise . A 50-kg barrel with a 0.75-meter diameter rolls down a 20° incline
without slipping.

Solution

A 3-meter-long, 25-kg beam is supported by two cables as shown below. You can treat the beam as a slender rod. Assume that
we want the left end of the beam at point A to remain at a constant height while the right end of the beam at point B accelerates
upwards at a rate of 1 m/s².

What is the rate of acceleration of the center of the beam and the rate of angular acceleration for the beam?
What will  and  need to be to achieve these accelerations?

Figure : problem diagram for Exercise . A horizontal beam is held in the air by the tension forces from two
vertical cables attached near the beam's ends.

Solution

You are modeling the robotic arm shown below. Treat each section of the arm as a slender rod. Section OA weighs 30 lbs and
section AB weighs 18 lbs. If we want the relative angular accelerations and velocities shown below, what should the motor
torques be at O and A? (This is a top-down view of the robot arm.)

Exercise 12.5.3

12.5.3 12.5.3

= 2.24 m/ax s2

Exercise 12.5.4

T1 T2

12.5.4 12.5.4

= 0.5 m/ , α = 0.333 aC\y s2 rad
s

= 81.75 N , = 176 NT1 T2

Exercise 12.5.5
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Figure : problem diagram for Exercise . Top-down view of a two-segment robotic arm with one end attached to a
fixed base, with motors at the two joints providing rotation.

Solution

-

-

This page titled 12.5: Chapter 12 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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13.1: Conservation of Energy for Rigid Bodies
The concepts of Work and Energy provide the basis for solving a variety of kinetics problems. Generally, this method is called the
Energy Method or the Conservation of Energy, and it can be boiled down to the idea that the work done to a body will be equal
to the change in energy of that body. Dividing energy into kinetic and potential energy pieces as we often do in dynamics problems,
we arrive at the following base equation for the conservation of energy.

It is important to notice that unlike Newton's Second Law, the above equation is not a vector equation. It does not need to be
broken down into components which can simplify the process. However, we only have a single equation and therefore can only
solve for a single unknown, which can limit this method.

Work in Rigid Body Problems: 
For work done to a rigid body, we must consider any force applied over a distance as we did for particles, as well as any moment
exerted over some angle of rotation. If these are constant forces and constant moments, we simply multiple the force times the
distance and the moment times the angle of rotation to find the overall work done in the problem. As with particles, these are the
components of forces in the direction of travel, with forces opposing the motion counting as negative work. Similarly, these are
moments in the direction of rotation, with moments opposing the rotation counting as negative work. Both types of work are
additive, with all work being lumped together for analysis.

In instances of non-constant forces and non-constant moments, we will need to integrate the forces and moments over the
distance traveled and the angle of rotation, respectively.

Energy: 

In rigid bodies, as with particles, we will break energy into kinetic energy and potential energy. Kinetic energy is the the energy
mass in motion, while potential energy represents the energy that is stored up due to the position or stresses in a body.

In its equation form, the kinetic energy of a rigid body is represented by one-half of the mass of the body times its velocity squared,
plus one-half of the mass moment of inertia times the angular velocity squared. If we wish to determine the change in kinetic
energy, we would simply take the final kinetic energy minus the initial kinetic energy.

Potential energy, unlike kinetic energy, is not really energy at all. Instead, it represents the work that a given force will potentially
do between two instants in time. Potential energy can come in many forms, but the two we will discuss here are gravitational
potential energy and elastic potential energy. These represent the work that the gravitational force and a spring force will do,
respectively. We often use these potential energy terms in place of the work done by gravity or springs respectively. When
including these potential energy terms, it's important to not also include the work done by gravity or spring forces.

The change in gravitational potential energy for any system is represented by the mass of the body, times the value  (9.81 m/s  or
32.2 ft/s  on the earth's surface), times the vertical change in height between the start position and the end position. In equation
form, this is as follows.

W = ΔKE+ΔPE (13.1.1)

W = F ∗ d+M ∗ Δθ (13.1.2)

W = F (x)dx+ M(θ)dθ∫
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x2
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Figure : When finding the change in gravitational potential energy, we multiply the object's mass by  (giving us the weight
of the object) and then multiply that by the change in the height of the object, regardless of the path taken.

Unlike work and kinetic energy, there is no rotational version of gravitational potential energy, so this is exactly the same as we had
for particles.

To determine the change in elastic potential energy, we will have to identify any linear springs (as we had for particles), as well as
any torsional springs and the spring constants for each of these springs.

Figure : The torsional spring in this mousetrap releases its elastic potential energy to slam the trap shut. Public domain image
by Evan-Amos.

To find the change in elastic potential energy, we will need to know the stiffness of any spring in the problem (represented by , in
units of force per distance for linear springs or moment per angle of twist for torsional springs) as well as the distance or angle the
spring has been stretched above or below its natural resting position. This difference from resting position is represented by
distance  for linear springs, or angle  for torsional springs. Once we have those values, the elastic potential energy can be
calculated by multiplying one-half of the stiffness by the distance  squared or the angle  squared. To find the change in elastic
potential energy, we simply take the final elastic potential energy minus the initial elastic potential energy.

Going back to our original conservation of energy equation, we simply plug the appropriate terms on each side (work on the left
and energies on the right) and balance the two sides to solve for any unknowns. Terms that do not exist or do not change (such as
elastic potential energy in a problem with no springs, or  in a problem where there is no change in the speed of the body) can
be set to zero. Again, there is only one equation, so we can only solve for a single unknown unless we supplement the conservation
of energy equation with other relationship equations.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/YVkzjzHSW-g.

The turntable on a record player consists of a disk 12 inches in diameter with a weight of 5 lbs. The motor accelerates the
turntable from rest to its operating speed of 33.33 rpm in one rotation. What is the work done by the motor? What is the
average torque the motor exerted?

Figure : A turntable on a record player. Image by Ron Clausen, CC-BY-SA 4.0.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/UPHgU-o80Q0.

A system as shown below is used to passively slow the lowering of a gate. The gate can be approximated as a flat plate on its
edge with a mass of 25 kilograms and a height of 2 meters. Assume the spring is unstretched as shown in the diagram.

What would the angular velocity of the gate be without the spring?
If we want to reduce the angular velocity at the bottom to 25% of its original value, what should the spring constant be?

14.2 Work and Energy in Rigid Body Syst14.2 Work and Energy in Rigid Body Syst……

Example 13.1.1

13.1.3

13.1.2 13.1.1

Example 13.1.2
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Figure : problem diagram for Example . Top-down view of a hinged gate in a currently open position, attached by
a spring to a wall running parallel to it that will slow the gate's motion as it swings shut.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/HCAC0tNR18w.

A 5-kilogram spherical ball with a radius of 0.05 meters is placed on a ramp as shown below. If the ball rolls without slipping,
what is the velocity of the ball at the bottom of the ramp?

Figure : problem diagram for Example . A spherical ball is placed at the top of a ramp, 0.1 meters above the
ground, and rolls without slipping.

Solution

13.1.4 13.1.2

WP13 1 2 MRCWP13 1 2 MRC

13.1.3 13.1.2

Example 13.1.3

13.1.5 13.1.3
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/p2pvQ0kCWIU.

A 16-kilogram half-cylinder is placed on a hard, flat surface as shown below and released from rest. What will the maximum
angular velocity be as it rocks back and forth?

Figure : problem diagram for Example . A cylinder 50 cm in diameter is sliced in half lengthwise, then balanced
on a flat, hard surface so that only one of its long, straight edges is in contact with said surface.

Solution

WP13 1 3 MRCWP13 1 3 MRC

13.1.4 13.1.3

Example 13.1.4
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/HpRtDQjoEBA.

A mechanism consists of two 3-kilogram wheels connected to a 2-kilogram bar as shown below. Based on the dimensions in
the diagram, what is the minimum required initial velocity for the wheels to ensure the mechanism makes it all the way through
one rotation without rocking backwards?

Figure : problem diagram for Example . A pair of wheels is connected by a bar of fixed length, constraining them
to roll together.

Solution

WP13 1 4 MRCWP13 1 4 MRC

13.1.5 13.1.4

Example 13.1.5
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Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/8cjQ1S6yOTc.

This page titled 13.1: Conservation of Energy for Rigid Bodies is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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13.2: Power and Efficiency in Rigid Bodies
Related to the concepts of work and energy are the concepts of power and efficiency. At its core, power is the rate at which work is
being done, and efficiency is the percentage of useful work or power that is transferred from input to output of some system.

Power 
Power at any instant is defined as the derivative of work with respect to time.

If we look at the average power over a set period, we can simply measure the work done and divide that by the time. Work for a
rigid body is defined as the force times the distance the center of mass travels, plus the moment times angle of rotation (in radians)
for our body.

Using the definition of velocity (distance over time) and the definition of angular velocity (  over time), we arrive at a third
equation for power at a given instant.

The common units of power are watts for the metric system, where one watt is defined as one Joule per second or one Newton-
meter per second, and horsepower in the English system, where one horsepower is defined as 550 foot-pounds per second.

Figure : The drive shaft in this mill is used to transfer power from the input to the output. If we multiplied the toque in the
shaft (in Newton-meters) by the angular velocity (in radians per second), we would get the power being transmitted in watts (where
a watt is a Newton-meter per second). Image by Ian Petticrew, CC-BY-SA 2.0.

Efficiency 
Any devices with work/power inputs and outputs will have some loss of work or power between that input and output due to things
like friction. While energy is always conserved, some energies such as heat may not be considered useful. A measure of the useful
work or power that makes it from the input of a device to the output is the efficiency. Specifically, efficiency is defined as the work
gotten out of a device divided by the work put into the device. With power being the work over time, efficiency can also be
described as power out of a device divided by the power put into a device (the time term would cancel out, leaving us with our
original definition).

It is impossible to have efficiencies greater than one (or 100%) because that would be a violation of the conservation of energy;
however, for most devices we wish to get the efficiencies as close to one as possible. This is not only because it does not waste
work/power, but also because any work or power that is "lost" in the device will be turned into heat that may build up.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/krZ1w5RNdwg.

The input to a gearbox has a measured 32 foot-pounds of torque at 700 rpm. The output has 207 foot-pounds of torque at 100
rpm.

What is the power at the input?
What is the power at the output?
What is the efficiency of the gearbox?

Figure : A model of a gearbox.

Solution

Video : Worked solution to example problem , provided by Dr. Majid Chatsaz. YouTube source:
https://youtu.be/Zauv-wZN_CE.

14.4 Power in Rigid Body Systems - Vide14.4 Power in Rigid Body Systems - Vide……

Example 13.2.1

13.2.2
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13.3: Chapter 13 Homework Problems

An impact-testing device consists of a 20-kilogram box supported by two slender 5-kilogram rods. The two rods are set up in
parallel so that the box remains level as it swings. If the whole system is released from the horizontal position shown below,
what is the velocity of the box after it has traveled 90°?

Figure : problem diagram for Exercise . An impact-testing device composed of a pair of rods swivel-mounted on a
heavy box and attached to the ceiling, allowing for the box to be raised close to the ceiling and to swing downwards when
released, remaining parallel throughout.

Solution

A 40-lb door with a width of 36 inches is attached to a spring with an unstretched length of 4 inches, designed to close the door
when left open. The spring is anchored as shown below when closed (solid outline is closed, dotted outline is open 90°). If we
want the door to have an angular velocity of 0.2 rad/s upon closing when released from rest at the 90° open position, what
should the spring constant of the spring be? (This is the top view of the door below)

Figure : problem diagram for Exercise . Top-down view of the closed and open positions a door designed to close
when left open, due to the action of a spring. The unstretched spring is shown attached to the door and the wall beside the
hinge, in the closed position.

Solution

Exercise 13.3.1

13.3.1 13.3.1

v = 3.97 m/s

Example 13.3.2

13.3.2 13.3.2

k = 2.68 lb/ft = 0.224 lb/in.
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14.1: Impulse-Momentum Equations for a Rigid Body
The concepts of impulse and momentum provide a third method of solving kinetics problems in dynamics. Generally this method
is called the Impulse-Momentum Method, and it can be boiled down to the idea that the impulse exerted on a body over a given
time will be equal to the change in that body's momentum. In a rigid body we will be concerned with not only linear impulse and
momentum, but also angular impulse and momentum. The linear and angular impulse momentum equations are below, with the
new term for angular impulse  starting out the angular impulse momentum equation.

For two-dimensional problems, we can break the linear impulse equation down into two scalar components to solve. In the case of
planar problems, we simply need to break all forces and velocities into  and  components - since all rotation will be about the -
axis, the angular impulse momentum equation remains a single equation. Notice, however, that we will need to take the mass
moment of inertia about the center of mass of the body into account; similarly, we will use the velocity of the center of mass when
discussing the velocity in the linear impulse momentum equations.

Impulse: 
As discussed with particles, a linear impulse in its most basic form is a force integrated over a time. For a force with a constant
magnitude, we can find the magnitude of the impulse by multiplying the magnitude of the force by the time that force is exerted. If
the force is not constant, we simply integrate the force function over the set time period. The direction of the impulse vector will be
the direction of the force vector, and the units will be a force multiplied by a time (Newton-seconds or pound-seconds, for
example).

An angular impulse is similar to a linear impulse, except it is the moment exerted over time instead of the force exerted over
time.

This moment can come either in the form of a torque directly applied to a body, or an off-center force causing a linear and angular
impulse at the same time. All moments should be taken about the center of mass of the body.

Figure : If we have two identical spheres with forces as shown above, the force on the left would cause only a linear impulse
over time, while the force on the right would cause both a linear impulse and an angular impulse over time.

( )K⃗ 

= m −mJ ⃗  v ⃗ f v ⃗ i (14.1.1)

= −K⃗  IGω⃗ f IGω⃗ i (14.1.2)

x y z

= m −mJx vf,x vi,x (14.1.3)

= m −mJy vf,y vi,y (14.1.4)

= −Kz IGωf IGωi (14.1.5)

Constant magnitude force:

Non-constant magnitude force:
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Constant magnitude moment:

Non-constant magnitude moment:
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Momentum: 

As discussed with particles, the linear momentum of a body will be equal to the mass of the body times its current velocity. Since
velocity is a vector, the momentum will also be a vector, having both magnitude and a direction. Unlike the impulse, which
happens over some set time, the momentum is captured as a snapshot of a specific instant in time (usually right before and after
some impulse is exerted). The units for linear momentum will be mass times unit distance per unit time. This is usually kilogram-
meters per second in metric, or slug-feet per second in English units.

Angular momentum, on the other hand, will be equal to the body's mass moment of inertia (about its center of mass) times its
current angular velocity. It's important to note that while the mass moment of inertia remains constant if the body does not change
shape, a shape that does change shape will likely have changes in mass moments of inertia along with changes in angular velocity.

Figure : During a spin, figure skaters will often draw their arms and legs in towards their bodies to reduce their mass moment
of inertia. With minimal impulses to change the angular momentum, the angular velocity will increase so that angular momentum is
conserved. Public Domain image by deerstop.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/vPxE2AFXADE.

A miter saw has an operating speed of 1500 rpm. The blade and motor armature have a combined weight of 3 lbs and a radius
of gyration of 1 inch.

What is the time required for the bearing friction alone (torque=0.015 inch-lbs) to stop the blade?
What is the torque a braking system would need to apply to stop the blade in just 0.25 seconds?
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Figure : A man cuts wood with a miter saw. Public domain image by John F. Looney

Solution (not yet available):

Not yet available.

A bowling ball is modeled as a 7-kilogram uniform sphere, 300 mm in diameter. The ball is released with an initial velocity of
6 m/s on a horizontal wooden floor (  = 0.1) with zero angular velocity.

How long does it take before the ball begins to roll without slipping?
What is the linear velocity of the ball at this time?

Figure : A bowling ball is released down a lane. Public domain image by Jerry Saslav.

Solution (not yet available):

Not yet available.

This page titled 14.1: Impulse-Momentum Equations for a Rigid Body is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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14.2: Rigid Body Surface Collisions
In instances where a moving rigid body impacts a solid and immovable surface, the resulting impact can seem chaotic. However,
we can still use the ideas of impulse and momentum to predict this impact behavior.

Just as with particles, an important first step in solving problems where a rigid body impacts a surface is to identify the normal and
tangential directions. The normal direction will be perpendicular to the surface being impacted, while the tangential direction will
be parallel to the surface being impacted. Also important for rigid body impact is identifying both the center of mass for the body
and the point of impact between the body and the surface.

Figure : Dropping a wrench on a concrete floor is a good example of rigid body impact with a solid surface. The first step in
solving these problems is to identify the normal and tangential directions, which will be perpendicular and parallel to the surface,
respectively. Also important is identifying the center of mass (C) and point of impact (A).

To predict the linear velocities after impact in the  and  directions, as well as the angular velocity after the impact (a total of three
unknowns), we will need three equations. These equations will come in the form of the conservation of momentum in the 
direction, as well as two equations based on the coefficient of restitution for the velocity in the  direction and the angular velocity
after the impact.

For momentum, we will notice that the normal forces during impact will always be in the normal direction. Assuming negligible
friction forces (which would be in the tangential direction), we will have no change in momentum in the tangential direction and
therefore no change in velocity in the tangential direction for the center of mass of the body. This gives us the first equation we
can use.

Next, examining the coefficient of restitution will give us another equation. Specifically, the coefficient of restitution relates the
velocities before an after the collision in the normal direction at the point of impact.

If the collision is elastic we would also conserve the kinetic energy of the body, giving us our third equation. More generally,
however, the coefficient of restitution can be used to quantify the amount of energy lost on the collision, with more elastic
collisions conserving a higher percentage of kinetic energy and more inelastic equations conserving less kinetic energy. The
equation below can be used for any elastic or semi elastic collision with a surface. Using the third equation below, we simply set 
equal to one for elastic collisions or equal to the coefficient of restitution for semi-elastic collisions.

Between the three equations above and whatever relevant kinematics relationships are necessary, we should be able to solve for up
to three unknowns. This allows us to completely predict the velocities after an impact, assuming we know the pre-impact velocities
and the coefficient of restitution for the impact itself.
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Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/LQKk2WLMe4A.

An 80-centimeter-long metal bar with a mass of 1 kilogram, falling at 2 meters per second, strikes the edge of a table as shown
below. Assuming a coefficient of restitution of 0.9, what is the expected velocity and angular velocity of the bar after impact?

Figure : problem diagram for Example Problem . A horizontal bar falls straight down, until its leftmost end strikes
the top of a flat table.

Solution (not yet available)

Not yet available.

This page titled 14.2: Rigid Body Surface Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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14.3: Chapter 14 Homework Problems

A flywheel with a diameter of 2 ft and a weight of 60 lbs is rotating at a rate of 600 rpm. A brake applies a friction force to the
outer rim of the flywheel, bringing it to a stop in 1.5 seconds. Based on this information, what was the average friction force
applied by the brake over this time?

Figure : problem diagram for Example . A brake that is fixed in place applies a tangent frictional force to the
outer rim of a rotating flywheel wheel.

Solution

A ring-shaped space station can be approximated as a thin ring 60 meters in diameter with a mass of 500,000 kg. Centrifugal
acceleration of the spinning station will be used to simulate gravity.

To simulate the acceleration of Earth (9.81 m/s²), how fast will the station need to be spinning?
If two thrusters each capable of exerting 10 kN of force will be used to get the station up to this speed, how long will we
need to run the thrusters?

Figure : problem diagram for Exercise . A ring-shaped space station is rotating counterclockwise, due to thrust
forces in opposite directions provided by two thrusters on opposite sides of the ring.

Solution

This page titled 14.3: Chapter 14 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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15.1: Undamped Free Vibrations
Vibrations occur in systems that attempt to return to their resting or equilibrium state when perturbed, or pushed away from their
equilibrium state. The simplest vibrations to analyze are undamped, free vibrations with one degree of freedom.

"Undamped" means that there are no energy losses with movement (whether the losses are intentional, from adding dampers, or
unintentional, through drag or friction). An undamped system will vibrate forever without any additional applied forces. A simple
pendulum has very low damping, and will swing for a long time before stopping. "Damped" means that there are resistive forces
and energy losses with movement that cause the system to stop moving eventually.

"Free" means that, after the initial perturbation, the only forces acting on the system are internal to the system (springs, dampers)
and/or gravity. A tuning fork continues to vibrate after the one initial perturbation of being struck. In contrast, "forced" means there
is an external, typically periodic, force acting on the system. A jackhammer vibrates due to having a supply of compressed air
continually forcing the bit up and down, and it stops vibrating very quickly without that external periodic forcing.

"One degree of freedom" means that we will only consider systems with one mass vibrating along one direction (e.g. use variable 
) or about one axis (e.g. use variable ). Systems having more than one mass or vibrating along or about two or more axes have

more than one degree of freedom.

We can derive the equation of the system by setting up a free body diagram. Consider a mass sitting on a frictionless surface,
attached to a wall via a spring.

Figure : This is a system consisting of a mass attached to the wall via a spring, sitting on a frictionless surface. The system is
currently in equilibrium, and the spring is not stretched or compressed.

The system above is in equilibrium. It is at rest, and will stay at rest unless some other force acts on it.

Figure : Free body diagram of the system in equilibrium position. Since the spring is at its unstretched length, it does not
produce a force.

To start the system vibrating, we need to perturb it. Perturbation is moving the system away from equilibrium by a small amount.

x θ
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Figure : Mass-spring system perturbed by an amount  from equilibrium. This stretches the spring, causing a spring force
which tends to pull the mass back toward equilibrium.

When we perturb this system, we either stretch or compress the spring. This generates a spring force, and the spring force is always
in a direction that tends to pull the system back toward equilibrium.

Figure : Free body diagram of the mass-spring system perturbed by an amount  from equilibrium. This stretches the
spring, causing a spring force which tends to pull the mass back toward equilibrium.

Figure : Mass-spring system vibration. After an initial perturbation, the system oscillates between two extreme positions (
 and ). The extreme positions are turnaround points where the velocity is zero, but the spring force is at a maximum

(maximum stretch/compression) and therefore the acceleration is maximum. As the system passes through the equilibrium position,
the spring is no longer stretched (zero force, zero acceleration), but the velocity is at its maximum (this can be determined using
conservation of energy) and the inertia of the system carries the mass past the equilibrium position. In the absence of damping or
the application of another force, the system will oscillate forever.

We can generate the equation of motion of the system, and determine the specifics of how it will vibrate, by analyzing this
perturbed state. Recall that the spring force or moment is:

Note that the spring constants in the above equations have different units, depending on whether the spring is linear
(Newton/meter) or torsional (Newton-meter/radian), and that  must be given in radians. The magnitude of the spring force

15.1.3 +x

15.1.4 +x

15.1.5
−xmax xmax
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k x⃗  (15.1.1)
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depends on , the distance perturbed from the spring's unstretched length (not necessarily the equilibrium position of the
system), and the same is true for the moment of a torsional spring. The spring force or moment is in the direction/orientation
opposite that of the displacement. That is, if you pull the mass to the right, the spring force points to the left.

The process for finding the equation of motion of the system is as follows:

1. Sketch the system with a small positive perturbation (  or ).
2. Draw the free body diagram of the perturbed system. Ensure that the spring force has a direction opposing the perturbation.
3. Find the one equation of motion for the system in the perturbed coordinate using Newton's Second Law. Keep the same positive

direction for position, and assign positive acceleration in the same direction.
4. Move all terms of the equation to one side, and check that all terms are positive. If all terms are not positive, there is an error in

the direction of displacement, acceleration, and/or spring force.

For the example system above, with mass  and spring constant , we derive the following:

This gives us a differential equation that describes the motion of the system. We can rewrite it in normal form:

The term  is called the angular natural frequency of the system, and has units of radians/second.

Assuming that the initial perturbation of the system can be described by the position and velocity of the mass at , then:

The solution to the differential equation, that provides the position  of the system at time , is:

The amplitude  describes the maximum displacement during the oscillations (i.e. ), and the phase  describes how the sine
function is shifted in time.
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Figure : Displacement response of the mass spring system (solution to the differential equation).

For a system where there is torsional vibration (that is, the oscillation involves a rotation), the equations are similarly:

Assuming that the initial perturbation of the system can be described by the position and velocity of the mass at ,

The solution to the differential equation, that provides the position  of the system at time , is:

Find an expression for the angular natural frequency of the following system, and find the maximum amplitude of vibration of
the system with mass  = 10 kg and spring constant  = 200 N/m when given an initial displacement of  = 0.1 m and an
initial velocity of  = 0.3 m/s.

Figure : problem diagram for Example . A rectangular mass on a flat surface has its left edge attached to two
identical springs, whose other ends are attached to a wall.

Solution
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Video : Worked solution to example problem . YouTube source: https://youtu.be/J1TVxxVjV_c.

Determine the equation of motion of the system from Newton's Second Law. Assume mass  = 5 kg and spring constant  =
500 N/m. Find the initial displacement, , such that the mass oscillates over a total range of 4 meters. Assume the initial
perturbation velocity, , is 10 m/s.

Figure : problem diagram for Example . A mass hangs from a spring attached to a ceiling.

Solution

Video : Worked solution to example problem . YouTube source: https://youtu.be/TAy412iVvwE.

This page titled 15.1: Undamped Free Vibrations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob
Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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15.2: Viscous Damped Free Vibrations
Viscous damping is damping that is proportional to the velocity of the system. That is, the faster the mass is moving, the more
damping force is resisting that motion. Fluids like air or water generate viscous drag forces.

Figure : A diagram showing the basic mechanism in a viscous damper. As the system (mass) attached to the loop at the top
vibrates up and down, the damper will resist motion in both directions due to the piston passing through the fluid. Image by
Egmason, CC-BY SA.

We will only consider linear viscous dampers, that is where the damping force is linearly proportional to velocity. The equation for
the force or moment produced by the damper, in either  or , is:

where  is the damping constant. This is a physical property of the damper based on the type of fluid, size of the piston, etc. Note
that the units of  change depending on whether it is damping linear motion (N-s/m) or rotational motion (N-m s/rad).

Figure : Diagram of a hanging mass-spring system, with a linear viscous damper, in equilibrium position. The spring is
stretched from its natural length.

When the system is at rest in the equilibrium position, the damper produced no force on the system (no velocity), while the spring
can produce force on the system, such as in the hanging mass shown above. Recall that this is the equilibrium position, but the
spring is NOT at its unstretched length, as the static mass produces an extention of the spring.
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Figure : Free body diagram of the system in equilibrium position. The spring is at its equilibrium position, but it is stretched
and does produce a force.

If we perturb the system (applying an initial displacement, an initial velocity, or both), the system will tend to move back to its
equilibrium position. What that movement looks like will depend on the system parameters ( , , and ).

Figure : The system in a perturbed position. The spring is stretched further and the damper is extended, compared to their
equilibrium positions.

To determine the equation of motion of the system, we draw a free body diagram of the system with perturbation and apply
Newton's Second Law.

Figure : Free body diagram of the system with perturbation.

The process for finding the equation of motion of the system is again:

1. Sketch the system with a small positive perturbation (  or ).
2. Draw the free body diagram of the perturbed system. Ensure that the spring force and the damper force have directions

opposing the perturbation.
3. Find the one equation of motion for the system in the perturbed coordinate using Newton's Second Law. Keep the same positive

direction for position, and assign positive acceleration in the same direction.
4. Move all terms of the equation to one side, and check that all terms are positive. If all terms are not positive, there is an error in

the direction of displacement, acceleration, and/or spring or damper force.

For the example system above, with mass , spring constant  and damping constant , we derive the following:
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This gives us a differential equation that describes the motion of the system. We can rewrite it in normal form:

As before, the term  is called the angular natural frequency of the system, and has units of rad/s.

 (zeta) is called the damping ratio. It is a dimensionless term that indicates the level of damping, and therefore the type of motion
of the damped system.

The expression for critical damping comes from the solution of the differential equation. The solution to the system differential
equation is of the form

where  is constant and the value(s) of  can be can be obtained by differentiating this general form of the solution and substituting
into the equation of motion.

Because the exponential term is never zero, we can divide both sides by that term and get:

Using the quadratic formula, we can find the roots of the equation:

Critical damping occurs when the term under the square root sign equals zero:

Four Viscous Damping Cases: 

There are four basic cases for the damping ratio. For the solutions that follow in each case, we will assume that the initial
perturbation displacement of the system is  and the initial perturbation velocity of the system is .

1. : Undamped 

This is the case covered in the previous section. Undamped systems oscillate about the equilibrium position continuously, unless
some other force is applied.
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Figure : Response of an undamped system.

2. : Overdamped 

Roots are both real and negative, but not equal to each other. Overdamped systems move slowly toward equilibrium without
oscillating.

Figure : Response of an overdamped system.

The response for an overdamped system is:

3. : Critically damped 

Roots are real and both equal to . Critically-damped systems will allow the fastest return to equilibrium without oscillation.

Figure : Response of an critically-damped system.
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The solution for a critically-damped system is:

4. : Underdamped 

The roots are complex numbers. Underdamped systems do oscillate around the equilibrium point; unlike undamped systems, the
amplitude of the oscillations diminishes until the system eventually stops moving at the equilibrium position.

Figure : Response of an underdamped system.

The solution for an underdamped system is:

 is called the damped natural frequency of the system. It is always less than :

The period of the underdamped response differs from the undamped response as well.

Comparison of Viscous Damping Cases: 

x(t) = (A+Bt) ,e− tωn (15.2.24)

where A = and B = + .x0 v0 x0ωn (15.2.25)

ζ <1
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Figure : Responses for all four types of system (or values of damping ratio) in viscous damping. All four systems have the
same mass and spring values, and have been given the same initial perturbations (initial position and initial velocity); this is
apparent because they start at the same -intercept and have the same slope at .

In the figure above, we can see that the critically-damped response results in the system returning to equilibrium the fastest. Also,
we can see that the underdamped system amplitude is quite attenuated compared to the undamped case.

This page titled 15.2: Viscous Damped Free Vibrations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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15.3: Friction (Coulomb) Damped Free Vibrations
Friction can also provide vibration damping. In this case, however, the damping is not proportional to the magnitude of velocity. It
only depends on the direction of velocity.

We remember from the section on dry friction that the force of friction in sliding depends only on the coefficient of kinetic friction, 
, and the normal force, .

The above equation does not include velocity. We know that kinetic friction acts to oppose motion, however, so a more complete
expression would be:

where  is the "sign" function, a function that captures the sign (direction) of velocity. The above equation then indicates that the
direction of friction is always opposite the direction of velocity, but the magnitude of velocity does not make a difference in the
magnitude of friction.

The equation of motion of the system becomes:

and the solution to this equation of motion is:

If we plot the response, we can see that there are several differences from a system with viscous damping.

Figure : Response of the system in friction damping.

Some differences when compared to viscous damping include:

1. The system oscillates at the natural frequency of the system, not a damped natural frequency.
2. The bounding curves are linear, not exponential.
3. The system does not return to zero. This is because the magnitude of the friction force does not diminish as the system

amplitude reduces, and at some point the spring force is no longer able to overcome the static friction that the system
experiences when it changes direction ( ).

Comparison to Viscous Underdamped System 
If we consider our simple linear mass-spring system, the magnitude of  does not change with velocity, unlike with viscous
damping. If we plotted both types of damping for the same system, we would get the following:
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Figure : Response of the system in friction damping and in viscous damping, for the same initial conditions ( ), spring
constants and masses.

Note that the viscous damping has more reduction in amplitude earlier (despite relatively light damping), but continues oscillating
past the point when the friction-damped system has stopped (specific relative values are dependent on the values of damping
constant and coefficients of friction). Also note that since the viscous damping is relatively light, the difference in period between
the two plots is quite small in this example.

This page titled 15.3: Friction (Coulomb) Damped Free Vibrations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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15.4: Undamped Harmonic Forced Vibrations
Often, mechanical systems are not undergoing free vibration, but are subject to some applied force that causes the system to
vibrate. In this section, we will consider only harmonic (that is, sine and cosine) forces, but any changing force can produce
vibration.

When we consider the free body diagram of the system, we now have an additional force to add: namely, the external harmonic
excitation.

Figure : A mass-spring system with an external force, , applying a harmonic excitation.

The equation of motion of the system above will be:

where  is a force of the form:

This equation of motion for the system can be re-written in standard form:

The solution to this system consists of the superposition of two solutions: a particular solution,  (related to the forcing function),
and a complementary solution,  (which is the solution to the system without forcing).

As we saw previously, the complementary solution is the solution to the undamped free system:

We can obtain the particular solution by assuming a solution of the form:

where  is the frequency of the harmonic forcing function. We differentiate this form of the solution, and then sub into the above
equation of motion:

After solving for , we can then use it to find the particular solution, :
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Thus, the general solution for a forced, undamped system is:

Figure : The complementary solution of the equation of motion. This represents the natural response of the system, and
oscillates at the angular natural frequency. This is the transient response.

Figure : The particular solution of the equation of motion. This represents the forced response of the system, and oscillates at
the angular forced frequency. This is the steady-state response.

Figure : The general solution of the equation of motion. This represents the combined response of the system, and the sum of
the complementary (or natural) and particular (or forced) responses.

The above figures show the two responses at different frequencies. Recall that the value of  comes from the physical
characteristics of the system ( ) and  comes from the force being applied to the system. These responses are summed, to
achieve the blue response (general solution) in Figure  above.
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Steady-State Response: 

In reality, this superimposed response does not last long. Every real system has some damping, and the natural response of the
system will be damped out. As long as the external harmonic force is applied, however, the response to it will remain. When
evaluating the response of the system to a harmonic forcing function, we will typically consider the steady-state response, when the
natural response has been damped out and the response to the forcing function remains.

Amplitude of Forced Vibration 

The amplitude of the steady-state forced vibration depends on the ratio of the forced frequency to the natural frequency. As 
approaches  (the ratio approaches 1), the magnitude  becomes very large. We can define a magnification factor:

Figure : The magnification factor, , is defined as the ratio of the amplitude of the steady-state vibration to the
displacement that would be achieved by static deflection.

From the figure above, we can discuss various cases:

: Resonance occurs. This results in very large-amplitude vibrations, and is associated with high stress and failure to the
system.

: The forcing function is nearly static, leaving essentially the static deflection and limited natural vibration.
: Magnification is positive and greater than 1, meaning the vibrations are in phase (when the force acts to the left, the

system displaces to the left) and the amplitude of vibration is larger than the static deflection.
: Magnification is negative and the absolute value is typically smaller than 1, meaning the vibration is out of phase

with the motion of the forcing function (when the force acts to the left, the system displaces to the right) and the amplitude of
vibration is smaller than the static deflection.

: The force is changing direction too fast for the block's motion to respond.
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Rotating Unbalance: 

One common cause of harmonic forced vibration in mechanical systems is rotating unbalance. This occurs when the axis of
rotation does not pass through the center of mass, meaning that the center of mass experiences some acceleration instead of
remaining stationary. This causes a force on the axle that changes direction as the center of mass rotates. We can represent this as a
small mass, , rotating about the axis of rotation at some distance, called an eccentricity, . The forced angular frequency, , in
this case is the angular frequency of the rotating system.

A 10-kg fan is fixed to a lightweight beam. The static weight of the fan deflects the beam by 20 mm. If the blade is designed to
spin at  = 15 rad/s, and the blade is mounted off-center (equivalent to a 1.5 kg mass at 50 mm from the axis of rotation),
determine the steady-state amplitude of vibration.

Figure : problem diagram for Example . A horizontal beam not touching the ground is attached to a wall at its left
end and holding up a three-bladed rotary fan on its right end.

Solution:

Video : Worked solution to example problem . YouTube source: https://youtu.be/k0vJLxaAjtw.

You are designing a stylish fan that uses only one blade. Approximate that blade as a narrow plate with a density per unit
length of 20 g/cm. The base weight of the rest of the device (except for the blade) is 4 kg, and the whole thing is mounted on a
lightweight beam. If the spring constant of the beam is  = 1000 N/m, find the length of blade than will cause resonance if the
fan is designed to spin at  = 15 rad/s.
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Figure : problem diagram for Example . A horizontal beam not touching the ground is attached to a wall at its left
end and holding up a single-bladed rotary fan on its right.

Solution:

Video : Worked solution to example problem . YouTube source: https://youtu.be/tV4ETwwOyX0.

This page titled 15.4: Undamped Harmonic Forced Vibrations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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15.5: Viscous Damped Harmonic Forced Vibrations
As described in the previous section, many vibrations are caused by an external harmonic forcing function (such as rotating
unbalance). While we assumed that the natural vibrations of the system eventually damped out somehow, leaving the forced
vibrations at steady-state, by explicitly including viscous damping in our model we can evaluate the system through the transient
stage when the natural vibrations are present.

Figure : A mass-spring-damper system with an external force, , applying a harmonic excitation.

Consider the system above. The equation of the system becomes:

Because the natural vibrations will damp out with friction (as mentioned in undamped harmonic vibrations), we will only consider
the particular solution. This particular solution will have the form:

After solving, we determine that the expressions for  and  are:

The magnification factor now becomes:
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Figure : This figure shows the various magnification factors associated with different levels of (under)damping.

From the figure above, we can see that the extreme amplitudes at resonance only occur when the damping ratio = 0 and the ratio of
frequencies is 1. Otherwise, damping inhibits the out-of-control vibrations that would otherwise be seen at resonance.
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16.1: Vectors
Vectors are used in engineering mechanics to represent quantities that have both a magnitude and a direction. Many engineering
quantities, such as forces, displacements, velocities, and accelerations, will need to be represented as vectors for analysis. Vector
quantities contrast with scalar values (such as mass, area, or speed), which have a magnitude but no direction.

Figure : The force below is represented as a vector. It has both a magnitude and a direction.

When dealing with vectors in equations, engineers commonly denote something as a vector by putting an arrow over the variable.
Variables without an arrow over top of them represent a scalar quantity, or simply the magnitude of that vector quantity.

In contrast with scalar quantities, we cannot add, subtract, multiply or divide them by simply adding, subtracting, multiplying or
dividing the magnitudes. The directions will also play a critical role in solving equations that contain vector quantities.

Vector Representation: 

To represent a vector quantity, we will generally have two options. These two options are:

Magnitude and Direction Form: Where the magnitude is given as a single quantity and the direction is given via an angle or
combination of angles.
Component Form: Where the magnitude and direction are given through component magnitudes in each coordinate direction.

Figure : The drawing above shows a force as vector. On the left the vector is represented as a magnitude and a direction. On
the right the same force is represented in terms of its - and -components.

The magnitude and direction form of vector quantities are often used at the start and end of a problem. This is because it is often
easier to measure things likes forces and velocities as a magnitude and direction at the start of a problem, and it is often easier to
visualize the final result as a magnitude and direction at the end. Vectors represented as a magnitude and direction need to be
shown visually through the use of an arrow, where the magnitude is the length of the arrow, and the direction is shown through the
arrow head and an angle or angles relative to some known axes or other direction.

The component form of a vector is often used in middle of the problem because it is far easier to do math with vector quantities in
component form. Vectors can be represented in component form in one of two ways. First we can use square brackets to indicate a
vector, with the , , and possibly  components separated by commas. Alternatively, we can write out a vector in component form
using the magnitudes in front of unit vectors to indicate directions (generally the , , and  unit vectors for the , , and 
directions respectively). Neither of these component forms relies on a visual depiction of the vector as with the magnitude and
direction form, though it is important to clearly identify the coordinate system in earlier diagrams.

16.1.1

Vector Quantity:

Scalar Quantity:

F ⃗ 

F

(16.1.1)

(16.1.2)

16.1.2
x y

x y z

î ĵ k̂ x y z

With Brackets:

With Unit Vectors:

= [3, 4, 5]F ⃗ 

= 3 +4 +5F ⃗  î ĵ k̂

(16.1.3)

(16.1.4)
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Converting Between Vector Representations in 2D 

For our analysis, we will often find it advantageous to have the vectors in one form or the other, and will therefore need to convert
the vector from a magnitude and direction to component form or vice versa. To do this we will use right triangles and trigonometry.

Going from a Magnitude and Direction to Component Form 

To go from a magnitude and direction to component form, we will first draw a right triangle with the hypotenuse being the original
vector. The horizontal arm of the triangle will then be the -component of the vector while the vertical arm is the  component of
the vector. If we know the angle of the vector with respect to either the horizontal or the vertical, we can use the sine and cosine
relationship to find the  and  components.

Figure : Using sine and cosine relationships, we can find the  and  components of a vector.

It is important to remember that how we measure the angle will affect the sine and cosine relationships. Multiplying the magnitude
by the sine will always give us the opposite leg and multiplying the magnitude by the cosine will always give us the adjacent leg.

Figure : Depending upon how we measure the angle, the sine/cosine may be either the  or the  component. Remember that
the sine will always give you the opposite leg, while the cosine will give you the adjacent leg.

Going from Component Form to Magnitude and Direction 

To find the magnitude and the direction of a vector using components, we will use the same process in reverse. We will draw the
components as the legs of a right triangle, where the hypotenuse of the triangle shows the magnitude and direction of the vector.

To find the magnitude of the vector we will use the Pythagorean Theorem, taking the square root of the sum of the squares of each
component. To find the angle, we can easily use the inverse tangent function, relating the opposite and adjacent legs of our right
triangle.

Figure : We will use the Pythagorean Theorem and the inverse tangent function to convert the vector back into magnitude
and direction form.

If we know the magnitude of the hypotenuse, we can also use the inverse sine and cosine functions in place of the inverse tangent
function to find the angle. As with the previous conversion, it is important to clearly identify the opposite leg, the adjacent leg, and

x y

x y
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the hypotenuse in our diagrams and to think of these when applying the inverse trig functions.

Converting Between Vector Representations in 3D 

In three dimensions, we will have either three components ( , , and ) for component form or a magnitude and two angles for the
direction in magnitude and direction form. To convert between forms we will need to draw in two sets of right triangles. The
hypotenuse of the first triangle will be the original vector and one of the legs will be one of the three components. The other leg
will then be the hypotenuse of the second triangle. The legs of this second triangle will then be the remaining two components as
shown in the diagram below. Use sine and cosine relationships to find the magnitude of each component along the way. This
general process of two consecutive right triangles will always hold true, but depending on angles that are given or chosen which
components end up being which leg can vary. Carefully plotting everything out in a diagram is important for this reason.

Figure : For 3D vectors we will need to draw two right triangles to convert between forms.

To go from component form back to a magnitude and direction, we will use the 3D form of the Pythagorean Theorem (the
magnitude will be the square root of the sum of the three components squared) and we can again use the inverse trig functions to
find the angles. We simply need to work backwards through the two right triangles in our problem, so again it is important to
carefully draw out your diagrams.

Alternative Method for Finding 3D Vector Components 

Sometimes, as with the tension in a cable, the geometry of the cable is given in component form rather than as angles. In cases such
as this we could use geometry to figure out the angles and then use those angles to figure out the components, but there is a
mathematical shortcut that will allow us to solve for the components more quickly involving the ratio of lengths. Specifically, the
ratios of the components of the cable length to the overall length of the cable will be the same as the ratio of the corresponding
force components to the overall magnitude of the force.

To use this method we will first need to find the overall length of the cable (or other physical geometric feature) using the
Pythagorean Theorem. Once we have that overall length, we find a ratio by taking the x component of the length divided by the
overall length. To find the -component of the force, we simply multiply the overall magnitude of the force by this ratio of lengths
( ). The process for the  and  components follows a similar path, except the ratios would include the  and  component
lengths instead of the  component.

x y z
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Figure : The alternative method of breaking a vector down into component form relies on the ratios of the cable components
to the overall length of the cable.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/2RO7VZ_u0Iw.

Determine the  and  components of the vector shown below.

Figure : problem diagram for Example . A force of magnitude 300 N is directed upwards and to the right, at 40°
above the horizontal.

Solution:

16.1.7

A 1.1 Vectors - Video Lecture - JPMA 1.1 Vectors - Video Lecture - JPM
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/TRS6jiih96o.

Determine the  and  components of the vector shown below.

Figure : problem diagram for Example . A tension force of magnitude 60 lbs is exerted along a cable, directed
upwards and to the right at a 75° angle from the vertical.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/hUrlI6eLGvE.

Vectors - Adaptive Map Worked ExaVectors - Adaptive Map Worked Exa……
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The velocity vector of the hockey puck shown below is given in component form. Determine the magnitude and direction of
the velocity with respect to the axes given.

Figure : problem diagram for Example . A hockey puck located at the origin of a Cartesian coordinate plane
experiences a velocity of components  m/s.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/3GeIU3Fc_qA.

Determine the , , and  components of the force vector shown below.

Figure : problem diagram for Example . A 45-Newton force vector with its tail at the origin of a Cartesian
coordinate system points 20° out of the screen towards the viewer and 30° below the plane of the horizontal.

Example 16.1.3

16.1.10 16.1.3
[5, −2.5]
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Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/ZG31PoIfIEc.

A cable as shown below is used to tether the top of a pole to a point on the ground. The cable has a tension force of 3 kN that
acts along the direction of the cable as shown below. What are the , , and  components of the tension force acting on the
top of the pole?

Figure : problem diagram for Example . A cable connects the origin of a Cartesian coordinate system to the top
of a 6-meter-long vertical pole with its base at the point (2, 0, 3) meters.

Solution:

Vectors - Adaptive Map Worked ExaVectors - Adaptive Map Worked Exa……
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/dUJwBohfCTU.

This page titled 16.1: Vectors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore & Contributors
(Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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16.2: Vector Addition
The most common thing we will need to do with many vector quantities is to add them up. The sum of these vector quantities is the
net vector quantity. For example, if we have a number of forces acting on a body, the sum of those forces is known as the net force.

The sum of any number of vectors can be determined geometrically using the following strategy. Starting with one of the vectors
as the base, we redraw the second vector so that the tail of the second vector begins at the tip of the first vector. We can repeat this
with a third vector, a forth vector and so on, putting the tail of each vector at the tip of the last vector until we have added taken all
vectors into account. Once the vectors are all drawn tip to tail, the sum of all the vectors will be the vector connecting the tail of the
first vector to the tip of the last vector.

Figure : The geometric addition of vectors involves putting the vectors tip to tail as shown above.

In practice, the easiest way to determine the magnitude and direction of the sum of the vectors is to add the vectors in component
form. This starts by separating each vector into , , and possibly  components. As we can see in the diagram below, the 
component of the sum of all the vectors will be the sum of all the  components of the individual vectors. Similarly, the  and 
components of the sum of the vectors will be the sum of all the  components and the sum of all the  components respectively.

Figure : By summing all the components in a given direction, we can find the component of the sum of the vectors in that
direction.

Once we find the sum of the components in each direction, we can either leave the net vector in component form, or we can use the
Pythagorean theorem and inverse tangent functions to convert the vector back into a magnitude and direction as detailed on the
previous page on vectors.
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Figure : Vide lecture covering this section, delivered by Dr. Jacob Moore. YouTube source:
https://youtu.be/0tv92MX2_ro.

Determine the sum of the force vectors in the diagram below. Leave the sum in component form.

Figure : problem diagram for Example . Three two-dimensional vectors radiate out from a single point.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/FwC8ntactEQ.

A 1.2 Vector Addition - Video Lecture - JA 1.2 Vector Addition - Video Lecture - J……
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Determine the sum of the force vectors in the diagram below. Give the sum in terms of a magnitude and a direction.

Figure : problem diagram for Example . Three two-dimensional vectors radiate out from a single point.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Jj8mCV7rdas.

Determine the sum of the force vectors in the diagram below. Leave the sum in component form.

Example 16.2.2
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Figure : problem diagram for Example . Two vectors radiate out from the origin of a three-dimensional Cartesian
coordinate system.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/PZzx3eQp6iQ.

This page titled 16.2: Vector Addition is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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16.3: Dot Product
The dot product (also sometimes called the scalar product) is a mathematical operation that can be performed on any two vectors
with the same number of elements. The result is a scalar number equal to the magnitude of the first vector, times the magnitude of
the second vector, times the cosine of the angle between the two vectors.

In engineering mechanics, the dot product is used almost exclusively with a second vector being a unit vector. If the second vector
in the dot product operation is a unit vector (thus having a magnitude of 1), the dot product will then represent the magnitude of the
first vector in the direction of the unit vector. In this respect, a dot product is useful in determining the component of a given vector
in any given direction, where the direction is given in terms of a unit vector.

Figure : The dot product of a vector with a unit vector will give you the magnitude of the first vector in the direction of the
unit vector.

As an alternative to the above equation for calculating the dot product, we can also calculate the dot product without knowing the
angle between the vectors ( ). For this method, we break each vector down into components and take the sum of each set of
components multiplied together as shown in the equation below.

Finally, as with many vector operations, the true strength of the dot product is that computers can calculate them very quickly. Both
MATLAB and the Wolfram Alpha Vector Operation Calculator are able to compute dot products for you.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/-MMHU4UhutQ.

Find the dot product of force vector  with the given unit vector .

⋅ = |A||B| cos(θ)A ⃗  B⃗  (16.3.1)

16.3.1

θ

⋅ = ( ∗ ) +( ∗ ) +( ∗ )A ⃗  B⃗  Ax Bx Ay By Az Bz (16.3.2)

A 1.3 The Dot Product - Video Lecture - A 1.3 The Dot Product - Video Lecture - ……
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Figure : problem diagram for Example . A force vector and a unit vector radiate out from the origin of a two-
dimensional Cartesian coordinate system.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/JJ3aXtIZwZ0.

Calculate the dot product of  with  by hand.

Figure : problem diagram for Example .

Solution:
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/NuuYcDNeja4.

Calculate the dot product of  with  using MATLAB.

Figure : problem diagram for Example .

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/B8PKJtL63C0.

Calculate the dot product of  with  using the Wolfram Vector Operation Calculator.
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16.3.3 16.3.2

Example 16.3.3

A ⃗  B⃗ 

16.3.4 16.3.3

Dot Product - Adaptive Map Worked Dot Product - Adaptive Map Worked ……

16.3.4 16.3.3

Example 16.3.4

A ⃗  B⃗ 
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Figure : problem diagram for Example .

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/2FZSXFASFiQ.

This page titled 16.3: Dot Product is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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16.4: Cross Product
The cross product is a mathematical operation that can be performed on any two three-dimensional vectors. The result of the
cross product operation will be a third vector that is perpendicular to both of the original vectors and has a magnitude of the first
vector times the magnitude of the second vector times the sine of the angle between the vectors.

Figure : The cross product of two vectors will be a vector that is perpendicular to both original vectors with a magnitude of 
 times  times the sine of the angle between  and .

When finding a cross product, you may notice that there are actually two directions that are perpendicular to both of your original
vectors. These two directions will be in exact opposite directions. To find which of these two directions the cross product uses, we
will use the right-hand rule.

To use the right-hand rule, hold out you right hand, point your index finger in the direction of the first vector, turn your middle
finger in towards the direction of the second vector, and hold your thumb up. Your thumb should now point in the direction of the
cross product vector.

Figure : We can use the right-hand rule to determine the direction of the cross product. Image adapted from work by Acdx,
license CC-BY-SA 3.0.

One additional thing you can note with the right-hand rule is that switching the order of the two input vectors (switching  and )
would result in the cross product pointing in exactly the opposite direction. This is because the cross product operation is not
commutative, meaning that order does matter. Specifically, switching the order of the inputs gives you a result that is exactly the
opposite of what your original calculation.

Calculating the Cross Product 

To find the cross product by hand, the easiest method is as follows.

1. Write out the letters  in a row as shown in the diagram below.

16.4.1

| |A ⃗  | |B⃗  A ⃗  B⃗ 

16.4.2

A ⃗  B⃗ 

x y z x y
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2. Write out the , , and  components of the first vector underneath the corresponding letters of the row of letters from Step 1.
Repeat this for the second vector, writing out the second vector's components in a row under the first vector.

3. Draw in diagonals as shown in the diagram. The diagonals that travel to the right as they move down represent positive
quantities, while the diagonals that travel to the left as they move down represent negative quantities.

4. Using the letters the diagonals travel through in the top row as a guide for which component of the result each quantity is part
of, take the sum of the positive and negative diagonal products for each of the three components in the result. This should give
you the final formula shown in the diagram.

Figure : We can use the visual aid above to help remember the formula for the cross product.

In addition to calculating the cross product by hand, we can also use computer tools such as the "cross" command in MATLAB or
web-based tools such as the Wolfram Alpha Vector Operation calculator. Access to these tools allows you to very easily and
quickly calculate the cross product and is a major advantage to using vectors operations to analyze problems.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/S0eav05be_U.

Calculate the cross product of force vectors  and  in the diagram below by hand.

x y z

16.4.3

A 1.4 The Cross Product - Video LectureA 1.4 The Cross Product - Video Lecture……

Example 16.4.1

A ⃗  B⃗ 
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Figure : problem diagram for Example . Two force vectors radiate out from the origin of a Cartesian coordinate
plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/KQhOkEflq9s.

Calculate the cross product of the vectors  and  in the diagram below by hand.

Figure : problem diagram for Example .

Solution:

16.4.4 16.4.1

Cross Product - Adaptive Map WorkeCross Product - Adaptive Map Worke……

16.4.2 16.4.1

Example 16.4.2

A ⃗  B⃗ 

16.4.5 16.4.2
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/oHLU_q3kVKc.

Calculate the cross product of the vectors  and  in the diagram below using MATLAB.

Figure : problem diagram for Example .

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/a9w6GWQJ96A.

Calculate the cross product of vectors  and  in the diagram below, using the Wolfram Vector Operation Calculator.

Cross Product - Adaptive Map WorkeCross Product - Adaptive Map Worke……

16.4.3 16.4.2

Example 16.4.3

A ⃗  B⃗ 

16.4.6 16.4.3

Cross Product - Adaptive Map WorkeCross Product - Adaptive Map Worke……

16.4.4 16.4.3

Example 16.4.4

A ⃗  B⃗ 
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Figure : problem diagram for Example .

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/24JCFHWWGG4.

This page titled 16.4: Cross Product is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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16.5: Solving Systems of Equations with Matrices
A system of equations is any set of equations that share some variables. A linear equation is an equation that consists entirely of
constants and simple variables. These variables can only be multiplied by a constant, and cannot be multiplied together, raised to an
exponent, used on logs or square roots, or put through other, more complex mathematical functions. An example of a system of
linear equations is provided below.

In courses such as statics and dynamics, we will often wind up with a system of linear equations and be asked to solve for the
unknowns in those equations. When we have just a few equations in our system, we will generally solve the equations by hand
using algebraic methods such as substitution or elimination though addition or subtraction. For larger and more complex problems,
we can wind up with larger systems of equations and at some point the math may become difficult to handle by hand. For these
large systems of linear equations, the easiest way to solve for the unknowns is to convert the system of equations into a single
matrix equation, and then use computer tools to solve the matrix equation for unknowns. Some computer tools will let you enter the
system of equations manually, but in the background the computer is probably just converting it to a matrix equation in the
background. For this reason it can be useful to understand this process.

In terms of assumptions, it is important to mention that this method will only work with systems of linear equations, and to have a
solvable matrix equation we will need to have the same number of equations as unknown variables. For example, above we
have a system of equations with three equations and three unknown variables. If these numbers do not match we will not be able to
solve the matrix equation using the method described below.

Converting a System of Equations to a Matrix Equation: 
The first step in converting a system of equations into a matrix equation is to rearrange the equations into a consistent format.
Generally we will put all the variables with their coefficients on one side of the equation and the constants on the other side of the
equation. Additionally, it is best to list the variables in the same order in each equation. This process of rearranging the equations
will make conversion later on easier.

Figure : To convert a system of equations into a single matrix equation, we will first rearrange the equations for a consistent
order. Then we will write out the coefficient ( ), variable ( ), and constant (  matrices.

Next we will begin the process of writing out the three matrices that make up the matrix equation. These three matrices are the
coefficient matrix (often referred to as the  matrix), the variable matrix (often referred to as the  matrix), and the constant
matrix (often referred to as the  matrix).

The coefficient matrix (or  matrix) is a  matrix (where  is the number of equations / number of unknown variables)
that contains all the coefficients for the variables. Each row of the matrix represents a single equation while each column
represents a single variable (it is sometimes helpful to write the variable at the top of each column). For instances where a
variable does not show up in an equation, we assume a coefficient of 0.
The variable matrix (or  matrix) is a  matrix that contains all the unknown variables. It is important that the order of
the variables in the coefficient matrix match the order of the variables in the variable matrix.
Finally, on the other side of the equal sign we have the constant matrix (or  matrix). This is a  matrix containing all
the constants from the right side of the equations. It is important that the order of the constants matches the order of equations in
the coefficient matrix.

+ = 0FAX FBX (16.5.1)

−8 = 0FAY (16.5.2)

−16 +4 +8 = 0FAY FAX (16.5.3)
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Once we have the three matrices set up, we are ready to solve for the unknowns in the variable matrix.

Solving the Matrix Equation: 

Starting with our , , and  matrices in the matrix equation below, we are looking to solve for for values of the unknown
variables that are contained in our  matrix.

For a scalar equation, we would simply do this by dividing both sides by , where the value for  would be . With a matrix
equation, we will instead need to multiple both sides of the equation by the inverse of the  matrix. This will cancel out the 
matrix on the left side, leaving only the  matrix that you are looking for. On the left we will have the inverse of the  matrix
times the  matrix. The result of this operation will be a  matrix containing the solution for all the variables. The value in
each row of the solution will correspond to the variable listed in the same row of the  matrix.

It is possible to find the inverse of the  matrix by hand and then multiply this with the  matrix, but this process would take
longer than just solving the equations using algebra. The true strength of the method is that computer tools such as MATLAB or
Wolfram Alpha can perform the matrix inversion and multiplication for you.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/ZLaeFbqR9QU.

The equilibrium equations for the body shown below are listed on the right. Convert the system of equations into a single
matrix equation and solve for the unknowns.

Figure : problem diagram for Example . A system of equations to solve for the forces experienced by a vertical
pole attached to the ground.

Solution:

A X B

X

[A][X] = [B] (16.5.4)

A X B/A

A A

X A

B N ×1

X

[X] = [A [B]]−1 (16.5.5)
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/QX-hJhXTEe0.

This page titled 16.5: Solving Systems of Equations with Matrices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.
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16.6: Appendix 1 Homework Problems

Determine the  and  components of the force vector shown below.

Figure : problem diagram for Exercise . A vector in the first quadrant of a Cartesian coordinate plane, with its tail
at the origin.

Solution:

Determine the , , and  components of the vector shown below.

Figure : problem diagram for Exercise . A vector originates from the origin of a Cartesian coordinate system,
pointing into the plane of the screen.

Solution:

Exercise 16.6.1

x y

16.6.1 16.6.1

= 692.8 NFx

= 400NFy

Exercise 16.6.2

x y z

16.6.2 16.6.2

= 4.17 kNFx

= 2.54 kNFy

= −3.50 kNFz
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An 80-lb tension acts along a cable stretching from point O to point A. Based on the dimensions given, break the tension force
shown into , , and  components.

Figure : problem diagram for Exercise . A cable with a force acting along it connects the origin of a Cartesian
coordinate system to a given point A.

Solution:

Determine the  and  components of the sum of the two vectors shown below.

Figure : problem diagram for Exercise . Two force vectors radiate out from the origin of a Cartesian coordinate
plane.

Solution:

There are two forces acting on a barge as shown below (  and ). The magnitude and direction of  is known, but the
magnitude and direction of  is not. If the sum of the two forces is 600 N along the -axis, what must the magnitude and

Exercise 16.6.3

x y z

16.6.3 16.6.3

= 56.47 lbsFx

= −37.64 lbsFy

= 42.35 lbsFz

Exercise 16.6.4

x y

16.6.4 16.6.4

= [58.2, 41.7] lbsFtotal

Exercise 16.6.5

F ⃗ 
1 F ⃗ 

2 F ⃗ 
1

F ⃗ 
2 x
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direction of  be?

Figure : problem diagram for Exercise . Two forces are applied to the same point on a barge, with the magnitude
and direction of one of the force vectors as well as the vector sum being known.

Solution:

, at 41.2° below the x-axis

This page titled 16.6: Appendix 1 Homework Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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17.1: Moment Integrals
A moment integral, as the name implies, is the general concept of using integration to determine the net moment of a force that is
spread over an area or volume. Because moments are generally a force times a distance, and because distributed forces are spread
out over a range of distances, we will need to use calculus to to determine the net moment exerted by a distributed force.

Beyond the most literal definition of a moment integral, the term "moment integral" is also general applied the process of
integrating distributed areas or masses that will be resisting some moment about a set axis.

Some of the applications of moment integrals include:

1. Finding point loads that are equivalent to distributed loads (the equivalent point load).
2. Finding the centroid (geometric center) or center of mass for 2D and 3D shapes.
3. Finding the area moment of inertia for a beam cross-section, which will be one factor in that beam's resistance to bending.
4. Finding the polar area moment of inertia for a shaft cross-section, which will be one factor in that shaft's resistance to torsion.
5. Finding the mass moment of inertia, indicating a body's resistance to angular accelerations.

When looking at moment integrals, there are number of different types of moment integrals. These will include moment integrals in
one dimension, two dimensions, and three dimensions; moment integrals of force functions, of areas/volumes, or of mass
distributions; first order or second order moment integrals; and rectangular or polar moment integrals.

Any combination of these different types is possible (for example, a first-order rectangular 2D area moment integral, or a second-
order polar 3D mass moment integral). However, only some of these combinations will have practical applications and will be
discussed in detail on future pages.

1D, 2D, and 3D Moment Integrals 

Technically we can take the moment integral in any number of dimensions, but for practical purposes we will never deal with
moment integrals beyond three dimensions. The number of dimensions will affect the complexity of the calculations (with three-
dimensional moment integrals being more involved than one- or two-dimensional moment integrals), but the nature of the problem
will dictate the dimensions needed. Often this is not listed in the type of moment integral, requiring you to assume the type based
on the context of the problem.

Force, Area/Volume, and Mass Moment Integrals 
The next distinction in moment integrals is made with regard what we are integrating. Generally, we can integrate force functions
over some distance, area, or volume, we can integrate the area or volume function itself, or we can integrate the mass distribution
over the area or volume. Each of these types of moment integrals has a different purpose and will start with a different
mathematical function to integrate, but the integration process beyond that will be very similar.

First vs Second Moment Integrals 
For moment integrals we will always be multiplying the force function, area or volume function, or mass distribution function by
either a distance or a distance squared. First moment integrals just multiply the initial function by the distance, while second
moment integrals multiply the function by the distance squared. Again, the type of moment integral we will use depends upon our
application, with things like equivalent point load, centroids, and center of mass relying on first moment integrals, and area
moments of inertia, polar moments of inertia, and mass moments of inertia relying on second moment integrals. As you can
probably deduce from this list, second moment integrals, are often labeled as a moment of inertia.

Rectangular vs Polar Moment Integrals 

Finally we will talk about rectangular moment integrals versus polar moment integrals. This is a difference in how we define
the distance in our moment integral. Let's start with the distinction in 2D. If our distance is measured from some axis (for example
the -axis, or the -axis) then it is a rectangular moment integral. On the other hand, if the distance is measured from some point
(such as the origin), then it is a polar moment integral.

∫ M = ∫ F (d) ∗ d (17.1.1)
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Figure : In two dimensions, if we locate a point by measuring its distance from some axis (similar to what  and  do here)
then we have a rectangular moment integral. If we locate it by measuring the distance from some point (as with  here), then we
have a polar moment integral.

This distinction is important for how we will take the integral. For rectangular moment integrals we will move left to right or
bottom to top. For polar moment integrals we will instead take the integral by radiating out from the center point.

In three-dimensional problems, the definitions change slightly. For rectangular moment integrals, the distance will be measured
from some plane (such as the -plane, -plane, or -plane). Again we will integrate left to right, bottom to top, or now back to
front with distances corresponding to the ,  or  coordinates of that point. For a polar moment integral, the distance will be
measured from some axis (such as the the , , or  axis), and we will integrate by radiating outward from that axis.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/kdCCYkWyF40.

This page titled 17.1: Moment Integrals is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jacob Moore &
Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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17.2: Centroids of Areas via Integration
The centroid of an area can be thought of as the geometric center of that area. The location of the centroid is often denoted with a 

 with the coordinates being , , denoting that they are the average  and  coordinate for the area. If an area was represented
as a thin, uniform plate, then the centroid would be the same as the center of mass for this thin plate.

Figure : The centroid (marked ) for a few common shapes.

Centroids of areas are useful for a number of situations in the mechanics course sequence, including in the analysis of distributed
forces, the bending in beams, and torsion in shafts, and as an intermediate step in determining moments of inertia.

The location of centroids for a variety of common shapes can simply be looked up in tables, such as this table for 2D centroids and
this table for 3D centroids. However, we will often need to determine the centroid of other shapes; to do this, we will generally use
one of two methods.

1. We can use the first moment integral to determine the centroid location.
2. We can use the method of composite parts along with centroid tables to determine the centroid location.

On this page we will only discuss the first method, as the method of composite parts is discussed in a later section. The tables used
in the method of composite parts, however, are derived via the first moment integral, so both methods ultimately rely on first
moment integrals.

Finding the Centroid via the First Moment Integral 

When we find the centroid of a two-dimensional shape, we will be looking for both an  and a  coordinate, represented as  and 
respectively. Collectively, this  coordinate is the centroid of the shape.

To find the average -coordinate of a shape ( ), we will essentially break the shape into a large number of very small and equally
sized areas, and find the average -coordinate of these areas. To do this sum of an infinite number of very small things, we will use
integration. Specifically, we will take the first rectangular area moment integral along the -axis, and then divide that integral
by the total area to find the average coordinate. We can do something similar along the -axis to find our  value. Writing all of
this out, we have the equations below.

Next let's discuss what the variable  represents and how we integrate it over the area. The variable  is the rate of change in
area as we move in a particular direction. For  we will be moving along the -axis, and for  we will be moving along the -axis
in these integrals.
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As we move along the -axis of a shape from its leftmost point to its rightmost point, the rate of change of the area at any instant in
time will be equal to the height of the shape that point times the rate at which we are moving along the axis ( ). Because the
height of the shape will change with position, we do not use any one value, but instead must come up with an equation that
describes the height at any given value of x. We will then multiply this  equation by the variable  (to make it a moment
integral), and integrate that equation from the leftmost  position of the shape ( ) to the rightmost  position of the shape (

).

Figure : The procedure for calculating the  coordinate of the centroid.

To find the  coordinate of the of the centroid, we have a similar process, but because we are moving along the -axis, the value 
 is the equation describing the width of the shape times the rate at which we are moving along the  axis ( ). We then take this 
 equation and multiply it by  to make it a moment integral. We will integrate this equation from the  position of the

bottommost point on the shape ( ) to the  position of the topmost point on the shape ( ).

Figure : The procedure for calculating the  coordinate of the centroid.

Using the first moment integral and the equations shown above, we can theoretically find the centroid of any shape as long as we
can write out equations to describe the height and width at any  or  value respectively. For more complex shapes, however,
determining these equations and then integrating these equations can become very time-consuming. That is why most of the time,
engineers will instead use the method of composite parts or computer tools.

Using Symmetry as a Shortcut 

Shape symmetry can provide a shortcut in many centroid calculations. Remember that the centroid is located at the average  and 
coordinate for all the points in the shape. If the shape has a line of symmetry, that means each point on one side of the line must
have an equivalent point on the other side of the line. This means that the average value (AKA the centroid) must lie along any axis
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of symmetry. If the shape has more than one axis of symmetry, then the centroid must exist at the intersection of the two axes of
symmetry.

Figure : If a shape has a line of symmetry, the centroid must lie somewhere along that line. If a shape has more than one line
of symmetry, the centroid must exist at the intersection of these lines.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/ilgYN8c1HUk.

Find the  and  coordinates of the centroid of the shape shown below.

Figure : problem diagram for Example . A right triangle with one leg lying along the -axis in the first quadrant
of a Cartesian plane.

Solution:
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/dZ2O3zwvuP0.

Find the  and  coordinates of the centroid of the shape shown below.

Figure : problem diagram for Example . A triangle with its longest side lying along the -axis in the first quadrant
of a Cartesian plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/hmGiCFwgIo8.
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Find the  and  coordinates of the centroid of the shape shown below.

Figure : problem diagram for Example . An L-shaped region lies along the - and -axes in the first quadrant of a
Cartesian plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/4MHflda4FBw.

This page titled 17.2: Centroids of Areas via Integration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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17.3: Centroids in Volumes and Center of Mass via Integration
The centroid of a volume can be thought of as the geometric center of that shape. It is often denoted as , being being located at
the coordinates . If this volume represents a part with a uniform density (like most single material parts) then the centroid
will also be the center of mass, a point usually labeled as .

Figure : The centroid point ( ) or the center of mass ( ) for some common shapes. (The centroid and center of mass are the
same point for bodies with a uniform density)

Just as with the centroids of an area, centroids of volumes and the center of mass are useful for a number of situations in the
mechanics course sequence, including the analysis of distributed forces, simplifying the analysis of gravity (which is itself a
distributed force), and as an intermediate step in determining mass moments of inertia.

Just as with areas, the location of the centroid (or center of mass) for a variety of common shapes can simply be looked up in
tables, such as this one. However, we will often need to determine the centroid or center of mass for other shapes, and to do this we
will generally use one of two methods.

1. We can use the first moment integral to determine the centroid or center of mass location.
2. We can use the method of composite parts along with centroid tables to determine the centroid or center of mass location.

On this page we will only discuss the first method, as the method of composite parts is discussed in a later section. However, the
tables used in the method of composite parts are derived via the first moment integral, so both methods ultimately rely on first
moment integrals.

Finding the Centroid of a Volume via the First Moment Integral 

When we find the centroid of a three-dimensional shape, we will be looking for the , , and  coordinates ( , , and ) of the
point that is the centroid of the shape.

Much like the centroid calculations we did with two-dimensional shapes, we are looking to find the shape's average coordinate in
each dimension. We do this by summing up all the little bits of volume times the , , or  coordinate of that bit of volume and
then dividing that sum by the total volume of the shape. Again we will use calculus to sum up an infinite number of infinitely small
volumes. Specifically this sum will be the first rectangular volume moment integral for the shape.

Working in each of the three coordinate directions we wind up with the following three equations.
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With these new equations we have the variable  rather than , because we are integrating over a volume rather than an area.
This represents the rate of change of the volume as we move along an axis from one end to another. The rate of change of the
volume at any point on the shape will be the cross-sectional area that is perpendicular to that axis times the rate at which we are
moving along that axis. Since cross-sectional area may vary as we move along the axis, we will need to determine a formula for the
cross sectional area at any point along that axis.

Figure : The -coordinate of the centroid/center of mass.

Using the first moment integral and the equations shown above, we can theoretically find the centroid of any volume as long as we
can write an equation to describe the cross section area for each direction. For more complex shapes, however, determining these
equations and then integrating these equations may become very time-consuming. For these complex shapes, the method of
composite parts or computer tools will most likely be much faster.

Using Symmetry as a Shortcut 

Just as with 2D areas, shape symmetry can provide a shortcut in many centroid calculations. Remember that the centroid coordinate
is the average , , and  coordinate for all the points in the shape. If the volume has a plane of symmetry, that means each point on
one side of the line must have an equivalent point on the other side of the line. This means that the average value (AKA the
centroid) must lie within that plane. If the volume has more than one plane of symmetry, then the centroid must exist at the
intersection of those planes.

Figure : If a volume has a plane of symmetry, then the centroid must lie somewhere in that plane. If the volume has more
than one plane of symmetry, the centroid must exist at the intersection of those planes.

Finding the Center of Mass for Non-Uniform Density Shapes 

If a body has a non-uniform density, then the centroid of the volume and the center of mass will no longer be the same point. In
these cases, we will be integrating with respect to mass, rather than integrating the volume. To do this, we will use something called
a density function, which will provide the density (the mass per unit volume) in terms of the , , and/or  location. In the end, we
will also be dividing by total mass, rather than dividing by total volume. The generalized equations for the center of mass are
shown in the equations below.
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In instances of uniform density (where the density function did not vary with location and was therefore just a constant), the density
constant could be moved outside of the integral. On the bottom, we could also write mass as density times volume, and the density
terms on the top and bottom of the fraction would cancel out. That is why for uniform-density parts, the centroid and center of mass
will be the same point.

When we have a density function that is not a constant, we will have to come up with a mathematical function for the density in
terms of  and/or  and/or  locations. If density varies along more than one axis, determining the function and then integrating it
may become quite difficult, and computer modeling may be advisable in these situations.

Figure : To find the center of mass of a body with a continuously varying density, we must have an equation to describe the
density based on position.

Once you have the density function, you will multiply that by the relevant  function as discussed earlier on the page and
multiply it by the variable for the relevant axis. This entire function is integrated from left to right, bottom to top, or back to front,
and then that quantity is divided by mass to find the location of the center of mass.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/cBiWKfBLEhk.
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The cone shown below is four inches tall and has a four-inch-diameter base. Find the , , and  coordinates of the centroid.

Figure : problem diagram for Example . A cone has a circular base centered on the -plane of a Cartesian
coordinate system, and a central axis that stretches along the positive -axis.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/IJHwNaOG4-s.

Find the y coordinate of the centroid for the tetrahedron shown in the image below. (The fourth vertex is at the origin)
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Figure : problem diagram for Example . A tetrahedron lies in the first octant of a Cartesian coordinate system,
with three of its edges formed by the coordinate axes.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/itu_P4ysw9g.

A water and ceramic slurry with a uniform density of 1100 kilograms per meter cubed enters a settling tank with a height of 1
meter and a diameter of 1 meter. After one hour in the tank, the density of the slurry at the top of the tank is measured to be
1000 kilograms per meter cubed and the density at the bottom of the tank is measured to be 1200 kilograms per meter cubed.
Assume the density of the slurry varies linearly between the top and the bottom. How far has the center of mass of the slurry
dropped between the initial conditions and the current state?
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Figure : problem diagram for Example . As particles in a tank settle, a solution of originally uniform density
becomes one with linearly decreasing density from bottom to top.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/BTyO2HolIHY.

This page titled 17.3: Centroids in Volumes and Center of Mass via Integration is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.
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17.4: Centroids and Centers of Mass via Method of Composite Parts
As an alternative to the use of moment integrals, we can use the Method of Composite Parts to find the centroid of an area or
volume or the center of mass of a body. This method is is often easier and faster that the integration method; however, it will be
limited by the table of centroids you have available. The method works by breaking the shape or volume down into a number of
more basic shapes, identifying the centroids or centers of masses of each part via a table of values, and then combing the results to
find the overall centroid or center of mass.

A key aspect of the method is the use of these centroid tables. This is a set of tables that lists the centroids (and usually also
moments of inertia) for a number of common areas and/or volumes. Some centroid tables can be found here for 2D shapes, and
here for 3D shapes. The method of composite parts is limited in that we will need to be able to break our complex shape down
entirely into shapes found in the centroid table we have available; otherwise, the method will not work without us also doing some
moment integrals.

Finding the Centroid via the Method of Composite Parts 

Start the process by labeling an origin point and axes on your shape. It will be important to measure all locations from the same
point. Next, we must break our complex shape down into several simpler shapes. This may include areas or volumes (which we
will count as positive areas or volumes) or holes (which we will count as negative areas or volumes). Each of these shapes will
have a centroid ( ) or center of mass ( ) listed on the diagram.

Figure : For the shape shown at the top, we can break it down into a rectangle (1), a right triangle (2), and a circular hole (3).
Each of these simple shapes is something we have listed in the centroid table to the right.

Once we have identified the different parts, we will create a table listing the area or volume of each piece, and the  and  centroid
coordinates (or , , and  coordinates in 3D). It is important to remember that each coordinate you list should be relative to the
same base origin point that you drew in earlier. You may need to mentally adjust diagrams in the centroid tables so that the shape
is oriented in the right direction, and account for the placement of the shape relative to the axes in your diagram.
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Figure : For each of the shapes, we need to find the area and the  and  coordinates of the centroid. Remember to find the
centroid coordinates relative to a single set of axes that is the same for all the shapes.

Once you have the areas and centroid coordinates for each shape relative to your origin point, you can find the  and  coordinate
of the centroid for the overall shape with the following formulas. Remember that areas or volumes for any shape that is a hole or
cutout in the design will be a negative area in your formula.

This generalized formula to find the centroid's -location is simply Area 1 times , plus Area 2 times , plus Area 3 times ,
adding up as many shapes as you have in this fashion and then dividing by the overall area of your combined shape. The equations
are the same for the -location of the overall centroid, except you will instead be using  values in your equations.

For centroids in three dimensions we will simply use volumes in place of areas, and we will have a  coordinate for our centroid as
well as the  and  coordinates.

Finding the Center of Mass via the Method of Composite Parts 
To use the method of composite parts to find the center of mass, we simply need to adjust the process slightly. First, center of mass
calculations will always be in three dimensions. Draw an origin point and some axes on your diagram we did for the centroid. We
will measure all locations relative to this origin point. We will then need to break the complex shape down into simple volumes,
with each simple volume being something in the centroid table we have available. Remember that when we have a part with a
uniform material, the centroid and center of mass are the same point, so we will often talk about these interchangeably.

Figure : When finding the center of mass via composite parts, we will break the shape up into several simpler shapes. The
figure on the left can be thought of as a hemisphere (1), on top of a cylinder (2) with another smaller cylinder cut out of it (3). Each
of these simple volumes are listed in our centroid table.

Once we have identified the different parts, we will create a table indicating the mass of each part, and the x, y, and z coordinate of
the center of mass for each individual part. It is important to remember that each coordinate you list should be relative to the same
base origin point, so you will need to mentally rotate and position the parts in the table on your axes.
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Figure : Create a table with the mass of each piece of the total shape, as well as the center of mass location ( , , and 
coordinates) for each piece.

One complicating factor with mass can be measuring the mass of the pieces separately. If we have a scale, we may simply know the
overall mass without knowing the mass of the individual pieces. In these cases, you may need work backwards to calculate the
density of the material (by dividing the overall mass by overall volume), and then use density times piece volume to find the mass
of each piece individually. When doing this, remember to count cutouts as negative mass in your calculations. For example, for the
hollow cylinder in the shape above, you would find the mass of a solid cylinder for Shape 2, then have a negative mass for the
cylindrical cutout for Shape 3.

Finally, once you have the mass the and center of mass coordinates for each shape, you can find the coordinates of the center of
mass for the overall volume with the following formulas.

Similar to the centroid equations, the -equation is simply the mass of Shape 1 times , plus the mass of Shape 2 times , and so
on for each part. After you have summed up these products for all the shapes, just divide by the total mass.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/wfjLNSfPXAI.
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Find the  and  coordinates of the centroid of the shape shown below.

Figure : problem diagram for Example . A trapezoid with two perpendicular sides and a hole through its middle
lies along the axes of the first quadrant of a Cartesian coordinate plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/QIe6Hk4Bofs.

Find the  and  coordinates of the centroid of the shape shown below.

Example 17.4.1
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Figure : problem diagram for Example . A pentagon with two perpendicular sides lies along the axes of the first
quadrant of a Cartesian coordinate plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/F1rlzboPlZM.

Find the  and  coordinates of the centroid of the shape shown below.
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Figure : problem diagram for Example . A rectangle with a hole through one side (shaped like a rectangle topped
with a semicircle) lies along the axes of the first quadrant of a Cartesian coordinate plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/tLybTEX8S_I.

The shape shown below consists of a solid semicircular hemisphere on top of a hollow cylinder. Based on the dimensions
below, determine the location of the centroid.
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Figure : problem diagram for Example . A hollowed-out cylinder topped with a hemisphere lies along the -axis
of a Cartesian coordinate system, with its base being centered in the -plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/vQk4OqTcDpQ.

A spherical steel tank (density = 8050 kg/m ) is filled halfway with water (density = 1000 kg/m ) as shown below. Find the
overall mass of the tank and the current location of the center of mass of the tank (measured from the base of the tank).
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Figure : problem diagram for Example . A spherical steel tank of diameter 2 meters and metal thickness 0.01
meters is half-filled with water.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/5zbYD4Wogck.

This page titled 17.4: Centroids and Centers of Mass via Method of Composite Parts is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.
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17.5: Area Moments of Inertia via Integration
Area moments of inertia are used in engineering mechanics courses to determine a body's resistance to bending loads or torsional
loads. Specifically, the area moment of inertia refers to the second area moment integral of a shape, with  representing the
moment of inertia about the -axis,  representing the moment of inertia about the -axis, and  (also called the polar moment
of inertia) representing the moment of inertia about the -axis. The moment of inertia about each axis represents the shapes
resistance to a moment applied about that respective axis. Moments about the - and -axes would tend to bend an object, while
moments about the -axis would tend to twist the body.

Figure : The moments of inertia for the cross section of a shape about each axis represents the shape's resistance to moments
about that axis. Moments applied about the -axis and -axis represent bending moments, while moments about the - axis
represent torsional moments.

Just as with centroids, each of these moments of inertia can be calculated via integration or by using the method of composite
parts and the parallel axis theorem. On this page we are going to focus on calculating the area moments of inertia via moment
integrals.

Bending Stresses and the Second Area Moment 
When an object is subjected to a bending moment, that body will experience both internal tensile stresses and compressive stresses
as shown in the diagram below. These stresses exert a net moment to counteract the loading moment, but exert no net force so that
the body remains in equilibrium.

Figure : A bending moment and the resulting internal tensile and compressive stresses needed to ensure the beam is in
equilibrium.

As we can see in the diagram, there is some central plane along which there are no tensile or compressive stresses. This is known as
the neutral surface, and if there are no other forces present it will run through the centroid of the cross section. As we move up or
down from the neutral surface, the stresses increase linearly. The moment exerted by this stress at any point will be the stress times
the moment arm, which also linearly increases as we move away from the neutral surface. This means that the resistance to bending
provided by any point in the cross section is directly proportional to the distance from the neutral axis squared. We can sum up the
resistances to bending then by using the second rectangular area moment of inertia, where our distances are measured from the
neutral axis.
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Assuming we put the origin point at the centroid and that the -axis is the neutral surface, the distance from the neutral surface to
any point is simply the  coordinate of that point. Similarly, if we apply a moment about the -axis, and had a neutral surface that
ran along the -axis, the distance from the neutral axis would simply be the  coordinate of the point. For this reason,  includes 

 as the distance, while  includes  as the distance.

Calculating the Rectangular Area Moment of Inertia via Integration 

To determine the area moment of inertia, start by drawing out the area under analysis, and include the axes you are taking the
moment of inertia about. This is important, since the moment of inertia will vary depending on the axis chosen. In cases on bending
stresses you will want to put the origin on the neutral surface, which will be at the centroid of the area. If the centroid is not given
to you, you will need to determine the centroid as discussed in prior sections.

To take the moment of inertia about the -axis through this point ( ) we will use the general formula discussed earlier. We will be
moving from bottom to top, integrating the rate of change of the area as we go, and multiplying that by the -value squared. The
rate of change of area ( ) as we move upwards will be the width of the object at any given -value times the rate at which we are
moving. Unless the width remains constant, the width will need to be represented as a mathematical function in terms of .

Figure : The rectangular moment of inertia about the -axis.

To find the moment of inertia about the -axis through a given point ( ) we will move left to right, using the distances from the 
-axis in our moment integral (in this case the  coordinates of each point). Moving from left to right, the rate of change of the area

will be the height of the shape at any given -value times the rate at which we are moving left to right. Again, we will need to
describe this with an mathematical function if the height is not constant. We will multiply this function by the -value squared for
the second moment integral, and this will give us the moment of inertia about the -axis.
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Figure : The rectangular moment of inertia about the -axis.

Torsional Stresses and the Polar Moment of Inertia 

When an object is subjected to a torsional moment, that object will experience internal shearing forces as shown in the diagram
below. These stresses are oriented in such a way that they will counteract the torsional moment, but do not exert any net force on
the shaft so that shaft stays in equilibrium.

Figure : Torsion causes internal shearing stresses that counteract the moment but exert no net force.
As we can see in the diagram, there is a central axis along which there are no shearing stresses. This is known as the neutral axis,
and if there are no other forces present, then this will travel through the centroid of the shaft's cross section. As we move away
from the neutral axis in any direction, the stresses will increase linearly. The moment exerted by the stress at any point will be the
stress times the moment arm, which also increases linearly as we move away from the neutral axis. This means that the resistance
to torsional loading provided by any one point on the cross section is directly proportional the square of the distance between the
point and neutral axis. We can sum up the resistances to torsional loading then using the second polar area moment of inertia,
where our distances are measured from the neutral axis ( ), a single point in the shaft's cross-section.

Calculating the Polar Area Moment of Inertia via Integration 

The first step in determining the polar moment of inertia is to draw the area and identify the point about which we are taking the
moment of inertia. In the case of torsional loading, we will usually want to pick the point at which the neutral axis travels through
the shaft's cross section, which in the absence of other types of loading will be the centroid of the cross section. If the centroid is
not clearly identified, you will need to determine the centroid as discussed in previous sections.
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To take the moment of inertia about this central point, we will be measuring all distances outward from this point. Rather than
moving left to right or top to bottom, we will instead be integrating from the center radiating outward in all directions. We will be
going from the minimum distance from the center for our shape (zero unless there is a central hole in our area) to the maximum
distance to the center. We will again be integrating the rate of change of area, which in this case will be a function for the
circumference at a given radius times the rate as which we are moving outwards times the given radius squared.

Figure : The polar moment of inertia about the neutral axis.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/gCM6Wd8sa6M.

Find the rectangular moments of inertia for this shape about both the -axis and -axis though the centroid. Leave the answer
in terms of the generic width ( ) and height ( ) of the rectangle.
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Figure : problem diagram for Example . A solid rectangle is centered at the origin of a Cartesian coordinate plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/PL6QIBL_rPw.

Find the polar moments of inertia for this circular area about its centroid. Leave the answer in terms of the generic radius .
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Figure : problem diagram for Example . A solid circle is centered at the origin of a Cartesian coordinate plane.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/peqSVmDjThA.

Find the polar moment of inertia of this hollow circular shape about its centroid.

Figure : problem diagram for Example . A disk of diameter 6 inches contains a centered circular cutout of
diameter 5 inches.

Solution:
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/Jw696gGSDM8.

This page titled 17.5: Area Moments of Inertia via Integration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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17.6: Mass Moments of Inertia via Integration
The mass moment of inertia represents a body's resistance to angular accelerations about an axis, just as mass represents a body's
resistance to linear accelerations. This is represented in an equation with the rotational version of Newton's Second Law.

Just as with area moments of inertia, the mass moment of inertia can be calculated via moment integrals or via the method of
composite parts and the parallel axis theorem. This page will only discuss the integration method, as the method of composite parts
is discussed on a separate page.

The Mass Moment of Inertia and Angular Accelerations 
The mass moment of inertia is a moment integral, specifically the second polar mass moment integral. To see why this relates
moments and angular accelerations, we start by examining a point mass on the end of a massless stick as shown below. Imagine we
want to rotate the stick about the left end by applying a moment there. We want to relate the moment exerted to the angular
acceleration of the stick about this point.

Figure : A point mass on the end of a massless stick. We are attempting to rotate the mass about the stick's left end by
exerting a moment there.

To relate the moment and the angular acceleration, we need to start with the traditional form of Newton's Second Law, stating that
the force exerted on the point mass by the stick will be equal to the mass times the acceleration of the point mass ( ). In
this case the moment will be related to the force in that the force exerted on the mass times the length of the stick ( ) is equal to the
moment. We can also relate the linear acceleration of the mass to its rotational counterpart in that the linear acceleration is the
angular acceleration times the length of the rod ( ). If we take these two substitutions and put them into the original 
equation, we can wind up with an equation that relates the moment and the angular acceleration for our scenario. A simplified
version of this new relationship states that the moment will be equal to the mass times the distance squared times the angular
acceleration. This mass-times-distance-squared term (relating the moment and angular acceleration) forms the basis for the mass
moment of inertia.

Taking our situation one step further, if we were to have multiple masses all connected to a central point, the moment and angular
acceleration would be related by the sum of all the mass times distance squared terms.

F = ma (17.6.1)

M = Iα (17.6.2)
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Figure : For systems with multiple masses, we would simply sum up all the mass-times-distance-squared terms to relate
moments and angular accelerations.

Taking the final step, rigid bodies with mass distributed over a volume are like an infinite number of small masses about an axis of
rotation. Rather than the massless sticks holding everything in place, the mass is simply held in place by the material around it. To
relate the moment and angular acceleration in this case, we use integration to add up the infinite number of small mass-times-
distance-squared terms.

Figure : Approximating a rigid body as an infinite number of infinitely small masses all connected to the axis of rotation, we
can sum all the mass-times-distance-squared terms with integration.

This moment integral which can be calculated for any given shape, called the mass moment of inertia, relates the moment and the
angular acceleration for the body about a set axis of rotation.

Calculating the Mass Moment of Inertia via Integration 
The first step in calculating the mass moment of inertia is to determine the axis of rotation you will be using. Unlike mass, the mass
moment of inertia is dependent upon the point and axis that we are rotating about. We can easily demonstrate this with something
like a broomstick, where depending on the position and the direction of the axis we are rotating about, the broomstick can be more
or less difficult to rotate.

Figure : The mass moment of inertia will vary depending upon the point and direction of the axis of rotation.
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After choosing the axis of rotation, it is helpful to draw the shape with the axis of rotation included. This is a polar integral, so we
will be taking the mass integral radiating outwards from this axis of rotation.

Also, we are integrating over the mass, and the mass at any given point will be the density times the volume. If the object we are
examining has a uniform density, as is often the case, we can pull that density constant outside of the integral, leaving only a
integral of the volume. Density is rarely given in these instances, but if you can determine the overall mass and overall volume you
can use that as well. If we put all of this into the original equation we had above, we wind up with the following.

For the polar integral, we need to define  in terms of a radius ( ) moving outwards from the axis of rotation. The rate of change
of the volume ( ) will be the cylindrical surface area at a given radius times the rate at which that radius is increasing ( ). The
height, radius, and holes in this cylindrical surface may all be changing so this  term may become quite complex, but technically
we could find this for mathematical function for any shape. Once we have the  function in terms of , we multiply that function
by  and we will evaluate the integral.

Figure : The mass moment of inertia for a general shape.

Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/uarIssOmWUU.

A thin circular disk has a mass of 6 kg and a radius of 0.3 meters. Determine the mass moment of inertia for the disk about the 
-axis.

I = ρ ∗ (dV ∗ ) = ∗ (dV ∗ )∫
rmax

rmin

r2 m

V
∫

rmax

rmin

r2 (17.6.9)
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Figure : problem diagram for Example . A thin cylindrical disk lies along the -axis with its base on the -plane,
centered at the origin.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/e1ZDv6xDUV8.

Determine the mass moment of inertia about the -axis for this general cone with base radius , height , and mass .

Figure : problem diagram for Example . A cone lies along the positive -axis, with the base centered at the origin
in the -plane.

Solution:
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/rL7xWl9FfWc.

This page titled 17.6: Mass Moments of Inertia via Integration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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17.7: Moments of Inertia via Composite Parts and Parallel Axis Theorem
As an alternative to integration, both area and mass moments of inertia can be calculated via the method of composite parts, similar
to what we did with centroids. In this method we will break down a complex shape into simple parts, look up the moments of
inertia for these parts in a table, adjust the moments of inertia for position, and finally add the adjusted values together to find the
overall moment of inertia. This method is known as the method of composite parts.

A key part to this process that was not present in centroid calculations is the adjustment for position. As discussed on the previous
pages, the area and mass moments of inertia are dependent upon the chosen axis of rotation. Moments of inertia for the parts of the
body can only be added when they are taken about the same axis. However, the moments of inertia in the table are generally
listed relative to that shape's centroid. Because each part has its own individual centroid coordinate, we cannot simply add these
numbers. We will use something called the Parallel Axis Theorem to adjust the moments of inertia so that they are all taken about
some standard axis or point. Once the moments of inertia are adjusted with the Parallel Axis Theorem, then we can add them
together using the method of composite parts.

The Parallel Axis Theorem 

When we calculated the area and mass moments of inertia via integration, one of the first things we had to do was to select a point
or axis we were going to take the moment of inertia about. We then measured all distances from that point or axis, where the
distances were the moment arms in our moment integrals. Because the centroid of a shape is the geometric center of an area or
volume, the average distance from the centroid to any one point in a body is at a minimum. If we pick a different point or axis to
take the moment of inertia about, then on average all the distances in our moment integral will be a little bit bigger. Specifically, the
further we move from the centroid, the larger the average distances become.

Figure : The distances used in our moment integrals depends on the point or axis chosen. These distances will be at a
minimum at the centroid and will get larger as we move further from the centroid.

Though this complicates our analysis, the nice thing is that the change in the moment of inertia is predictable. It will always be at a
minimum when we take the moment of inertia about the centroid, or an axis going through the centroid. This minimum, which we
will call , is the value we will look up in our moment of inertia table. From this minimum, or unadjusted value, we can find the
moment of inertia value about any point  by adding an an adjustment factor equal to the area times distance squared for area
moments of inertia, or mass times distance squared for mass moments of inertia.

This adjustment process with the equations above is the parallel axis theorem. The area or mass terms simply represent the area or
mass of the part you are looking at, while the distance ( ) represents the distance that we are moving the axis about which we are
taking the moment of inertia. This may be a vertical distance, a horizontal distance, or a diagonal depending on the axis the
moment of inertia is taken about.

17.7.1
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Figure : The distance ( ) in the Parallel Axis Theorem represents the distance we are moving the axis we are taking the
moment of inertia about.

Say we are trying to find the moments of inertia of the rectangle above about point . We would start by looking up , , and 
 about the centroid of the rectangle ( ) in the moment of inertia table. Then we would add on an area-times-distance-squared

term to each to find the adjusted moments of inertia about . The distance we are moving the  axis for  is the vertical distance 
, the distance we are moving the -axis for  is the horizontal distance , and the distance we would move the -axis (which is

pointing out of the page) for  is the diagonal distance .

Center of mass adjustments follow a similar logic, using mass times distance squared, where the distance represents how far you
are moving the axis of rotation in three-dimensional space.

Using the Method of Composite Parts to Find the Moment of Inertia 

To find the moment of inertia of a body using the method of composite parts, you need to start by breaking your area or volume
down into simple shapes. Make sure each individual shape is available in the moment of inertia table, and you can treat holes or
cutouts as negative area or mass.

Figure : Start by breaking down your area or volume into simple parts, and number those parts. Holes or cutouts will count
as negative areas or masses.

Next you are going to create a table to keep track of values. Devote a row to each part that your numbered earlier, and include a
final "total" row that will be used for some values. Most of the work of the method of composite parts is filling in this table. The
columns will vary slightly with what you are looking for, but you will generally need the following.
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Figure : Most work in the method of composite parts will revolve around filling out a table such as this one. This table
contains the rows and columns necessary to find the rectangular area moments of inertia (  and ) for this composite body.

The area or mass for each piece (area for area moments of inertia or mass for mass moments of inertia). Remember that cutouts
should be listed as negative areas or masses.
The centroid or center of mass locations ( ,  and possibly  coordinates). Most of the time, we will be finding the moment of
inertia about centroid of the composite shape, and if that is not explicitly given to you, you will need to find that before going
further. For more details on this, see the page Centroids and Centers of Mass via Method of Composite Parts.
The moment of inertia values about each shape's centroid. To find these values you will plug numbers for height, radius, mass,
etc. into formulas on the moment of inertia table. Do not use these formulas blindly though, as you may need to mentally rotate
the body, and thus switch equations, if the orientation of the shape in the table does not match the orientation of the shape in
your diagram.
The adjustment distances ( ) for each shape. For this value you will want to determine how far the -axis, -axis, or -axis
moves to go from the centroid of the piece to the overall centroid or point you are taking the moment of inertia about. To
calculate these values, generally you will be finding the horizontal, vertical, or diagonal distances between piece centroids and
the overall centroids that you have listed earlier in the table. See the parallel axis theorem section of this page earlier for more
details.
Finally, you will have a column of the adjusted moments of inertia. Take the original moment of inertia about the centroid, then
simply add your area times  term or mass times  term for this adjusted value.

The overall moment of inertia of your composite body is simply the sum of all of the adjusted moments of inertia for the pieces,
which will be the sum of the values in the last column (or columns, if you are finding the moments of inertia about more than one
axis).

Video : Video lecture covering this section, delivered by Dr. Jacob Moore. YouTube source: https://youtu.be/zulGTSWF6xs.

Use the parallel axis theorem to find the mass moment of inertia of this slender rod with mass  and length  about the -axis
at its endpoint.
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Figure : problem diagram for Example . A rod lies along the positive -axis of a Cartesian coordinate system,
with its left endpoint located at the origin.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/4oN0kgDO3Yw.

A beam is made by connecting two 2" x 4" beams in a T-pattern with the cross section as shown below. Determine the location
of the centroid of this combined cross section and then find the rectangular area moment of inertia about the -axis through the
centroid point.

Figure : problem diagram for Example . The top edge of a vertical 2" x 4" beam is centered on and connected to
the lower edge of a horizontal 2" x 4" beam, creating a T-shaped assembly.

Solution:
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Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/lgXlp2lRaiA.

A dumbbell consists of two spheres of diameter 0.2 meter, each with a mass of 40 kg, attached to the ends of a 0.6-meter-long
slender rod of mass 20 kg. Determine the mass moment of inertia of the dumbbell about the -axis shown in the diagram.

Figure : problem diagram for Example . A dumbbell consists of a slender rod with a sphere attached to each end
lying along the -axis of a Cartesian coordinate system, with its midpoint at the origin.

Solution:

Video : Worked solution to example problem , provided by Dr. Jacob Moore. YouTube source:
https://youtu.be/ufewJ7CmvIs.

This page titled 17.7: Moments of Inertia via Composite Parts and Parallel Axis Theorem is shared under a CC BY-SA 4.0 license and was
authored, remixed, and/or curated by Jacob Moore & Contributors (Mechanics Map) via source content that was edited to the style and standards
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17.8: Appendix 2 Homework Problems

A shape is bounded on the left by the -axis, on the bottom by the -axis, and along its remaining side by the function 

. Determine the  and  coordinates of the centroid of this shape via integration. (Hint: for , work from the

top down to make the math easier.)

Figure : problem diagram for Exercise . A shape in the first quadrant of a Cartesian coordinate plane is bounded

by the intersection of the function  with the - and -axes.

Solution:

Determine the  and  coordinates of the centroid of the shape shown below via integration.

Figure : problem diagram for Exercise . A trapezoid lies in the first quadrant of the Cartesian coordinate plane,
with two sides lying along the axes.

Solution:

Exercise 17.8.1

y x

y = − +8
1

2
x2 x y ȳ

17.8.1 17.8.1

y = − + 8
1

2
x2 x y

= 1.5 cm, = 3.2 cmx̄ ȳ

Exercise 17.8.2

x y
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= 2.94 in, = 4.24 in.x̄ ȳ
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A water tank as shown below takes the form of an inverted, truncated cone. The diameter of the base is 4 ft, the diameter of the
top is 8 ft, and the height of the tank is 4 ft. Using integration, determine the height of the center of mass of the filled tank.
(Assume the tank is filled with water and the walls have negligible mass.)

Figure : problem diagram for Exercise . A water tank in the shape of an inverted truncated circular cone, with a
wide top and a narrower base.

Solution:

Use the method of composite parts to determine the centroid of the shape shown below.

Figure : problem diagram for Exercise . A composite shape in the first quadrant of a Cartesian coordinate plane,
with two sides lying along the axes, consists of two trapezoids, or two rectangles and two right triangles.

Solution:

A floating platform consists of a square piece of plywood weighing 50 lbs with a negligible thickness on top of a rectangular
prism of a foam material weighing 100 lbs as shown below. Based on this information, what is the location of the center of
mass for the floating platform?

Exercise 17.8.3

17.8.3 17.8.3
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Figure : problem diagram for Exercise . A foam rectangular prism with one half of its top face covered by a
plywood square lies in the first octant of a Cartesian coordinate system.

Solution:

Use the integration method to find the moments of inertia for the shape shown below…

About the -axis through the centroid.
About the -axis through the centroid.

Figure : problem diagram for Exercise . An downwards-facing isosceles triangle has a horizontal base and a
center of mass on its line of symmetry.

Solution:

Use the integration method to find the polar moment of inertia for the semicircle shown below about point O.

17.8.5 17.8.5

= 3.33 ft, = 1.33 ft, = 2 ftxc yc zc
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Figure : problem diagram for Exercise . A semicircle lies with its straight edge centered on the -axis of a
Cartesian coordinate plane, with origin O.

Solution:

A plastic beam has a square cross-section with semicircular cutouts on the top and bottom as shown below. What is the area
moment of inertia of the beam’s cross section about the  and  axes through the center point?

Figure : problem diagram for Exercise . A beam cross-section consists of a square with semicircular cutouts
centered on the top and bottom sides.

Solution:

A piece of angled steel has a cross section that is 1 cm thick and has a length of 6 cm on each side as shown below. What are
the  and  area moments of inertia through the centroid of the cross section?

17.8.7 17.8.7 x

= 1017.9 iJzz n4

Exercise 17.8.8
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Figure : problem diagram for Exercise . A part cross-section consists of an L shape composed of two identically
sized rectangles.

Solution:

The pendulum in an antique clock consists of a brass disc with a mass of 0.25 kg and diameter of 6 cm at the end of a slender
wooden rod with a mass of 0.1 kg. Determine the mass moment of inertia of the pendulum about the top of the rod.

Figure : problem diagram for Exercise . A clock pendulum is represented as a vertical wooden rod with a brass
disc attached to its bottom edge.

Solution:

A space telescope can be approximated as a 600-kg cylinder with a 4-meter diameter and 4-meter height attached to two 100-
kg solar panels as shown below. What is the approximate mass moment of inertia for the space telescope about the -axis
shown?

17.8.9 17.8.9

= = 35.462 c = 3.546 ∗  Ixx Iyy m4 10−7 m4
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Figure : problem diagram for Exercise . A space telescope is represented as a vertical cylinder with two
horizontal rods extending from midway along the cylinder's height, each supporting a solar panel.

Solution:

A flywheel has an original weight of 15 pounds and a diameter of 6 inches. To reduce the weight, four two-inch diameter holes
are drilled into the flywheel, each leaving half an inch to the outside edge as shown below. What was the original polar mass
moment of about the center point? Assuming a uniform thickness, what is the new mass moment of inertia after drilling in the
holes? (Hint: holes count as negative mass in the mass moment calculations.)

Figure : problem diagram for Exercise . A flywheel consists of a circular disk with four circular holes drilled in
a radially symmetric pattern about its center point.

Solution:

17.8: Appendix 2 Homework Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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Center of Mass and Mass Moments of Inertia for Homogeneous 3D Bodies
Shape with Volume and Center of Mass Location Shown Mass Moments of Inertia
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Shape with Volume and Center of Mass Location Shown Mass Moments of Inertia
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Shape with Volume and Center of Mass Location Shown Mass Moments of Inertia

Thin Cylindrical Shell
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Shape with Volume and Center of Mass Location Shown Mass Moments of Inertia

Spherical Shell
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Shape with Volume and Center of Mass Location Shown Mass Moments of Inertia

Right Circular Cone

V olume = π h
1

3
r2

= = m(4 + )Ixx Izz
3

80
r2 h2

= mIyy
3

10
r2

= = m(3 + 2 )Ixx′ Izz ′
1

20
r2 h2

https://libretexts.org/
https://eng.libretexts.org/@go/page/58319?pdf


1 https://eng.libretexts.org/@go/page/58050

Centroids and Area Moments of Inertia for 2D Shapes
Shape with Area and Centroid Location

Shown
Rectangular Area Moments of Inertia Polar Area Moments of Inertia
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Shape with Area and Centroid Location
Shown

Rectangular Area Moments of Inertia Polar Area Moments of Inertia
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Shape with Area and Centroid Location
Shown

Rectangular Area Moments of Inertia Polar Area Moments of Inertia
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